首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Crystalline 1,4-distannabarrelene compounds [(ADCAr)3Sn2]SnCl3 ( 3 - Ar ) (ADCAr={ArC(NDipp)2CC}; Dipp=2,6-iPr2C6H3, Ar=Ph or DMP; DMP=4-Me2NC6H4) derived from anionic dicarbenes Li(ADCAr) ( 2 - Ar ) (Ar=Ph or DMP) have been reported. The cationic moiety of 3 - Ar features a barrelene framework with three coordinated SnII atoms at the 1,4-positions, whereas the anionic unit SnCl3 is formally derived from SnCl2 and chloride ion. The all carbon substituted bis-stannylenes 3 - Ar have been characterized by NMR spectroscopy and X-ray diffraction. DFT calculations reveal that the HOMO of 3 - Ph (ϵ=−6.40 eV) is mainly the lone-pair orbital at the SnII atoms of the barrelene unit. 3 - Ar readily react with sulfur and selenium to afford the mixed-valence SnII/SnIV compounds [(ADCAr)3SnSn(E)](SnCl6)0.5 (E=S 4 - Ar , Ar=Ph or DMP; E=Se 5 - Ph ).  相似文献   

2.
The reaction of Li2[PhbamDipp] (PhbamDipp = PhB(NDipp)2; Dipp = 2,6‐iPr2C6H3) with lanthanum(III) triiodides LnI3(THF)3.5 (Ln = La, Sm) in THF produces complexes of the type [Li(THF)4]2[(PhbamDipp)2LnI], which were characterized in solution by multinuclear NMR spectroscopy and in the solid state by single‐crystal X‐ray structural determinations. The ion‐separated complexes are comprised of a spirocyclic anion in which two PhbamDipp ligands and an iodide ion are linked to the five‐coordinate metal atom; charge balance is provided by two tetrasolvated lithium ions [Li(THF)4]+.  相似文献   

3.
The reaction system GeCl2 ⋅ dioxane/LiSTsi (Tsi=C(SiMe3)3) opens a fruitful area in germanium chemistry, depending on the stoichiometry and solvent used during the reaction. For example, the reaction of GeCl2 ⋅ dioxane in toluene with two equivalents of the thiolate gives the expected germylene Ge(STsi)2 in excellent yield. This germylene readily reacts with hydrogen and acetylene, however, in a non-selective way. By using an excess amount of the thiolate and toluene as the solvent, the germanide [Ge(STsi)3][Li(thf)] is obtained. Performing the same reaction in thf leads to a C−H activation of thf to give (H7C4O)Ge[STsi](μ2-S)2Ge[STsi]2, in which the thf molecule is still intact. Using a sub-stoichiometric amount of the thiolate leads to the heteroleptic compound [ClGe(STsi)]2 and to the insertion product (thf)Ge[S-GeCl2-Tsi]2, in which additional GeCl2 molecules insert into the C−S bonds of Ge(STsi)2. The synthesis and the experimentally determined structures of all compounds are presented together with first reactivity studies of Ge(STsi)2.  相似文献   

4.
Herein, we report the first 1,4-diphosphinine-1,4-diide compound [(ADCPh)P]2 ( 5-Ph ) (ADCPh=PhC{(NDipp)C}2; Dipp=2,6-iPr2C6H3) derived from an anionic dicarbene (ADCPh) as a red crystalline solid. Compound 5-Ph containing a 16π-electron planar fused-tricyclic ring system was obtained by the 4e reduction of [(ADCPh)PCl2]2 ( 4-Ph ) with Mg (or KC8) in a quantitative yield. Experimental and computational results imply that the central 8π-electrons C4P2 ring of 5-Ph , which is fused between two 6π-electrons C3N2 aromatic rings, is antiaromatic. Thus, each of the phosphorus atoms of 5-Ph has two electron-lone-pairs, one in a p-type orbital is in conjugation with the C=C bonds of the C4P2 ring, while the second resides in a σ-symmetric orbital. This can be shown with the gold complex [(ADCPh)P(AuCl)2]2 ( 6-Ph ) obtained by reacting 5-Ph with (Me2S)AuCl. A mixture of 5-Ph and 4-Ph undergoes comproportionation in the presence of MgCl2 to form the intermediate oxidation state compound [(ADCAr)P]2(MgCl4) ( 7-Ph ), which is an aromatic species.  相似文献   

5.
The synthesis and full characterization of the sterically demanding ditopic lithium bis(pyrazol‐1‐yl)borates Li2[p‐C6H4(B(Ph)pzR2)2] is reported (pzR = 3‐phenylpyrazol‐1‐yl ( 3 Ph), 3‐t‐butylpyrazol‐1‐yl ( 3 tBu)). Compound 3 Ph crystallizes from THF as THF‐adduct 3 Ph(THF)4 which features a straight conformation with a long Li···Li distance of 12.68(1) Å. Compound 3 tBu was found to function as efficient and selective scavenger of chloride ions. In the presence of LiCl it forms anionic complexes [ 3 tBuCl] with a central Li‐Cl‐Li core (Li···Li = 3.75(1) Å).  相似文献   

6.
Three heterobimetallic aluminum‐germanium(IV) disulfides are synthesized. The reaction of {LAl[(SLi)2(THF)2]}2 ( 1 ) (L = HC(CMeNAr)2, Ar = 2,6‐iPr2C6H3) with Ph2GeCl2, Me2GeCl2, and GeCl4, respectively, in THF afforded LAl(μ‐S)2GePh2 ( 2 ), LAl(μ‐S)2GeMe2 ( 3 ) and LAl(μ‐S)2Ge(μ‐S)2AlL ( 4 ) in good yields. Compounds 2 , 3 and 4 were investigated by elemental analysis, NMR, EI‐MS and 3 was also characterized by single crystal X‐ray structural analysis.  相似文献   

7.
We report herein the synthesis of a stable plumbylone ( 3 ) by reduction of a bromodigermylplumbylene ( 2 ) with 2.2 equiv of potassium graphite (KC8). The molecular structure of 3 was established by a single-crystal X-ray diffraction study and features a two-coordinated Pb center with an acute Ge−Pb−Ge bond angle. Computational studies showed that this complex ( 3 ) possesses a singlet electronic ground state with a Pb0 center. Its high thermal stability can be most likely ascribed to the delocalization of π electrons over the Ge−Pb−Ge moiety. A preliminary reactivity study demonstrates that complex 3 can deliver Pb0 atoms to an organic azide producing a tetrameric imido complex [(PbNDipp)4] (Dipp=2,6-iPr-C6H3, 4 ) and perform a metathesis reaction with GeCl2⋅dioxane to produce a bis(germylene)-stabilized germylone ( 5 ), highlighting the synthetic utility of 3 .  相似文献   

8.
A series of new germylene compounds has been synthesized offering systematic variation in the σ‐ and π‐capabilities of the α‐substituent and differing levels of reactivity towards E?H bond activation (E=H, B, C, N, Si, Ge). Chloride metathesis utilizing [(terphenyl)GeCl] proves to be an effective synthetic route to complexes of the type [(terphenyl)Ge(ERn)] ( 1 – 6 : ERn=NHDipp, CH(SiMe3)2, P(SiMe3)2, Si(SiMe3)3 or B(NDippCH)2; terphenyl=C6H3Mes2‐2,6=ArMes or C6H3Dipp2‐2,6=ArDipp; Dipp=C6H3iPr2‐2,6, Mes=C6H2Me3‐2,4,6), while the related complex [{(Me3Si)2N}Ge{B(NDippCH)2}] ( 8 ) can be accessed by an amide/boryl exchange route. Metrical parameters have been probed by X‐ray crystallography, and are consistent with widening angles at the metal centre as more bulky and/or more electropositive substituents are employed. Thus, the widest germylene units (θ>110°) are found to be associated with strongly σ‐donating boryl or silyl ancillary donors. HOMO–LUMO gaps for the new germylene complexes have been appraised by DFT calculations. The aryl(boryl)‐germylene system [ArMesGe{B(NDippCH)2}] ( 6 ‐Mes), which features a wide C‐Ge‐B angle (110.4(1)°) and (albeit relatively weak) ancillary π‐acceptor capabilities, has the smallest HOMO–LUMO gap (119 kJ mol?1). These features result in 6 ‐Mes being remarkably reactive, undergoing facile intramolecular C?H activation involving one of the mesityl ortho‐methyl groups. The related aryl(silyl)‐germylene system, [ArMesGe{Si(SiMe3)3}] ( 5 ‐Mes) has a marginally wider HOMO–LUMO gap (134 kJ mol?1), rendering it less labile towards decomposition, yet reactive enough to oxidatively cleave H2 and NH3 to give the corresponding dihydride and (amido)hydride. Mixed aryl/alkyl, aryl/amido and aryl/phosphido complexes are unreactive, but amido/boryl complex 8 is competent for the activation of E?H bonds (E=H, B, Si) to give hydrido, boryl and silyl products. The results of these reactivity studies imply that the use of the very strongly σ‐donating boryl or silyl substituents is an effective strategy for rendering metallylene complexes competent for E?H bond activation.  相似文献   

9.
Nickel(O) Complexes with the Anionic Ligands E (C6H5)?3 (E = Si, Ge, Sn) Complexes of the type MeIXNi(EPH3)X(THF)Y are formed from Ni(COD)2 by substitution with MeIEPh3 (E = Si, Ge, Sn) in THF (COD = Cyclooctadiene-1,5). In the case of the ligands GePh?3 and SnPh?3 nickel(O) is fourfold coordinated, but in the case of SiPh?3 it is only two-fold or threefold coordinated. Products of the reaction between Ni(COD)2 and LiPbPh3 are Li2Ni(COD)Ph2(THF)5 and Ph3PbPbPh3. The 1H-n.m.r., 29Si-n.m.r., and 119Sn-Mössbauer spectra of the complexes MeIXNi(EPh3)X(THF)Y are compared with the spectra of the corresponding alkali compounds MeIEPh3. The magnetic anisotropy effects of the atomes Ge, Sn, Pb and Ni are of high importance for 1H- and 29Si-chemical shifts. The donor action of SnPh?3 is shown by the Mössbauer spectrum of Na4Ni(SnPh3)4(THF)4. But there is no direct evidence of π-back donation in the compound.  相似文献   

10.
The dinuclear palladium(I) complexes [L(Ar2HGe)Pd(μ‐GeAr2)2Pd(GeHAr2)L] (Ar=Ph, p‐Tol; L=PMe3, tBuNC) contain terminal germyl and bridging germylene ligands with the experimentally observed Ge???Ge bond lengths of 2.8263(4) Å (L=PMe3) and 2.928(1) Å (L=tBuNC), which are close to the longest Ge? Ge bond reported to date [2.714(1) Å]. Significant Ge???Ge interactions between the germylene and germyl ligands (PMe3 complexes > tBuNC complexes) are supported by DFT calculations, Wiberg bond indices (WBI), and natural bond orbital (NBO) analyses. Exchanging tBuNC for PMe3 ligands increases the Ge???Ge interaction, and simultaneously activates two Pd? Ge bonds. Adding the chelating diphosphine 1,2‐bis(diethylphosphino)ethane (depe) to the PMe3 complexes results in the intramolecular coupling of germyl and germylene ligands followed by extrusion of a digermane.  相似文献   

11.
Protonolysis of the titanium alkyl complex [Ti(CH2SiMe3)(Xy-N3N)] (Xy-N3N=[{(3,5-Me2C6H3)NCH2CH2}3N]3−) supported by a triamidoamine ligand, with [NEt3H][B(3,5-Cl2C6H3)4] or [PhNMe2H][B(C6F5)4] afforded the cations [Ti(Xy-N3N)][A] (A=[B(3,5-Cl2C6H3)4] ( 1[B(ArCl)4] ; B(ArCl)4=tetrakis(3,5-dichlorophenyl)borate); A=[B(C6F5)4] ( 1[B(ArF)4] ; B(ArF)4=tetrakis[3,5-bis(trifluoromethyl)phenyl]borate). These Lewis acidic cations were reacted with coordinating solvents to afford the cations [Ti(L)(Xy-N3N)][B(C6F5)4] ( 2-L ; L=Et2O, pyridine and THF). XRD analysis revealed a trigonal monopyramidal (TMP) geometry for the tetracoordinate cations in 1[B(ArX)4] and trigonal bipyramidal (TBP) geometry for the pentacoordinate cations in 2-L . Variable-temperature NMR spectroscopy showed a dynamic equilibrium for 2-Et2O in solution, involving the dissociation of Et2O. Coordination to the titanium(IV) center activated the THF molecule, which, in the presence of NEt3, underwent ring-opening to give the titanium alkoxide [Ti(O(CH2)4NEt3)(Xy-N3N)][B(3,5-Cl2C6H3)4] ( 3 ). Hydride abstraction from Cβ,eq of the triamidoamine ligand arm in [Ti(CH2SiMe3)(Xy-N3N)] or [Ti(NMe2)(Xy-N3N)] with [Ph3C][B(3,5-Cl2C6H3)4] led to the diamidoamine–imine complex [Ti(R){(Xy-N=CHCH2)(Xy-NCH2CH2)2N}][B(3,5-Cl2C6H3)4] (R=CH2SiMe3 ( 4 a ); R=NMe2 ( 4 b )). Hydride addition to 4 b with [Li(THF)][HBPh3] gave [Ti(NMe2)(Xy-N3N)], whereas KH deprotonated further to give [Ti(NMe2){(Xy-NCH=CH)(Xy-NCH2CH2)2N}] ( 5 ). XRD on single crystals of 3 and 4 b confirmed the proposed structures.  相似文献   

12.
The synthesis, reactivity, and electronic structure of the unique germylone iron carbonyl complex [SiNSi]Ge0 →Fe(CO)4 is reported. The compound was obtained in 49 % yield from the reaction of the bis(N‐heterocyclic silylenyl)pyridine pincer ligand SiNSi (1,6‐C5NH3‐[EtNSi(NtBu)2CPh]2) with GeCl2?(dioxane) to give the corresponding chlorogermyliumylidene chloride precursor [SiNSi]GeIICl+ Cl? , which was further reduced with K2Fe(CO)4. Single‐crystal X‐ray diffraction analysis of [SiNSi]Ge →Fe(CO)4 revealed that the Ge0 center adopts a trigonal‐pyramidal geometry with a Si‐Ge‐Si angle of 95.66(2)°. Remarkably, one of the SiII donor atoms in the complex is five‐coordinated because of additional (pyridine)N→Si coordination. Unexpectedly, the reaction of [SiNSi]Ge →Fe(CO)4 with GeCl2?(dioxane) (one molar equivalent) yielded the first push–pull germylone–germylene donor–acceptor complex, [SiNSi]Ge →GeCl2→Fe(CO)4 through the insertion of GeCl2 into the dative Ge0→Fe bond. The electronic features of the new compounds were investigated by DFT calculations.  相似文献   

13.
(Ph3Ge)2Eu(THF)4 ( 1 a ) and (Ph3Ge)2Eu(DME)3 ( 1 b ) have been synthesized by reacting Ph3GeH with europium naphthalene, C10H8Eu(THF)2, in THF or DME, respectively. The reaction of Ph3GeH with C10H8[EuI(DME)2]2 in DME yielded Ph3GeEuI(DME)2 ( 2 ). The addition of two equivalents of CH3I to a solution of 1 b in THF produced Ph3GeMe and EuI2(DME)2 with almost quantitative yields. Complex 2 easily disproportionates forming mixtures of 1 b and EuI2(DME)2. The molecular structure of 1 b was determined from X-ray diffraction data.  相似文献   

14.
Complexes (Ph3Si)2Yb(THF)4 (1) and (Ph3Ge)2Yb(THF)4 (2) were synthesised by the reactions of Ph3SiCl or Ph3GeCl with ytterbium in THF and characterised by X-ray diffraction. Compounds 1 and 2 have similar centrosymmetrical octahedral structures with a central Yb atom bonded to four oxygen atoms of THF molecules in equatorial positions and two Si (or Ge) atoms of SiPh3 (or GePh3) fragments in axial positions. In the crystal of 2 there are two symmetrically independent molecules with the same structure. The Yb-Si and Yb-Ge distances in 1 and 2 are 3.158(2) and 3.170(2), 3.141(2) Å, respectively.  相似文献   

15.
Quantum chemical calculations using density functional theory with the TPSS+D3(BJ) and M06‐2X+D3(ABC) functionals have been carried out to understand the mechanisms of catalyst‐free hydrogermylation/hydrostannylation reactions between the two‐coordinate hydrido‐tetrylenes :E(H)(L+) (E=Ge or Sn, L+=N(Ar+)(SiiPr3); Ar+=C6H2{C(H)Ph2}2iPr‐2,6,4) and a range of unactivated terminal (C2H3R, R=H, Ph, or tBu) and cyclic [(CH)2(CH2)2(CH2)n, n=1, 2, or 4] alkenes. The calculations suggest that the addition reactions of the germylenes and stannylenes to the cyclic and acyclic alkenes occur as one‐step processes through formal [2+2] addition of the E?H fragment across the C?C π bond. The reactions have moderate barriers and are weakly exergonic. The steric bulk of the tetrylene amido groups has little influence on the activation barriers and on the reaction energies of the anti‐Markovnikov pathway, but the Markovnikov addition is clearly disfavored by the size of the substituents. The addition of the tetrylenes to the cyclic alkenes is less exergonic than the addition to the terminal alkenes, which agrees with the experimentally observed reversibility of the former reactions. The hydrogermylation reactions have lower activation energies and are more exergonic than the stannylene addition. An energy decomposition analysis of the transition state for the hydrogermylation of cyclohexene shows that the reaction takes place with simultaneous formation of the Ge?C and (Ge)H?C′ bonds. The dominant orbitals of the germylene are the σ‐type lone pair MO of Ge, which serves as a donor orbital, and the vacant p(π) MO of Ge, which acts as acceptor orbital for the π* and π MOs of the olefin. Inspection of the transition states of some selected reactions suggests that the differences between the activation energies come from a delicate balance between the deformation energies of the interacting species and their interaction energies.  相似文献   

16.
Mixed Ligand Complexes of Nickel(0) and Cobalt(I) with the Anionic Ligands E(C6H5)3? (E ? Ge, Sn, Pb) Complexes of the general formula MINi(PPh3)3(EPh3)(THF)x (E ? Ge[Ia], Sn[Ib], Pb[Ic]) and MI3Ni(PPh3)(EPh3)3(THF)x (E ? Ge[IIa], Sn[IIb]) are formed from (Ph3P)2Ni(C2H4) by substitution with MIEPh3. The analogous complexes of the ligand SiPh3? could not be prepared, because of the formation of SiPh4 from LiSiPh3 and coordinated PPh3. Attempts to synthesize a nickel(II) complex of the ligand SnPh3? had no success, only possible decomposition products of these compounds, like (nBu2PPh)2NiII(Ph)Cl and NaxNi°(PPh3)4?x(SnP4)x(THF)Y, were isolated. NaCoI(PPh3)2(SnPh3)2(THF)7 (IV) was prepared by the reaction of Co(PPh3)3Cl and NaSnPh3. 1H-NMR and 119Sn Mössbauer spectra show a higher donor action of SnPh3? in IIb than in Ib. This causes a stronger π-back donation Ni → P in the case of IIb. IV is a paramagnetic compound, the vis-spectrum is discussed using simple crystal field theory.  相似文献   

17.
Transition metal tetrylene complexes offer great opportunities for molecular cooperation due to the ambiphilic character of the group 14 element. Here we focus on the coordination of germylene [(ArMes2)2Ge :] (ArMes=C6H3-2,6-(C6H2-2,4,6-Me3)2) to [RhCl(COD)]2 (COD=1,5-cyclooctadiene), which yields a neutral germyl complex in which the rhodium center exhibits both η6- and η2-coordination to two mesityl rings in an unusual pincer-type structure. Chloride abstraction from this species triggers a singular dehydrogenative double C−H bond activation across the Ge/Rh motif. We have isolated and fully characterized three rhodium-germyl species associated to three C−H cleavage events along this process. The reaction mechanism has been further investigated by computational means, supporting the key cooperative action of rhodium and germanium centers.  相似文献   

18.
An efficient synthesis of 2-di-tert-butylphosphanylmethylpyrrole (HpyrmPtBu2), by treating 2-dimethylaminomethylpyrrole (HpyrmNMe2) with tBu2PH at 135 °C in the absence of any solvent, has allowed the preparation of the new PGeP germylene Ge(pyrmPtBu2)2 ( 1 ), by treating [GeCl2(dioxane)] with LipyrmPtBu2, in which the Ge atom is stabilized by intramolecular interactions with one (solid state) or both (solution) of its phosphane groups. Reactions of germylene 1 with Group 10 metal dichlorido complexes containing easily displaceable ligands have led to [MCl{κ3P,Ge,P-GeCl(pyrmPtBu2)2}] [M=Ni ( 2 ), Pd ( 3 ), Pt ( 4 )], which have an unflawed square-planar metal environment. Treatment of germylene 1 with [AuCl(tht)] (tht=tetrahydrothiophene) rendered [Au{κ3P,Ge,P-GeCl(pyrmPtBu2)2}] ( 5 ), which is a rare case of a T-shaped gold(I) complex. The hydrolysis of 5 gave the linear gold(I) derivative [Au(κP-HpyrmPtBu2)2]Cl ( 6 ). Complexes 2 – 5 contain a PGeP pincer chloridogermyl ligand that arises from the insertion of the Ge atom of germylene 1 into a M−Cl bond of the corresponding metal reagent. The bonding in these molecules has been studied by DFT/NBO/QTAIM calculations. These results demonstrate that the great flexibility of germylene 1 makes it a better precursor to PGeP pincer complexes than the previously known germylenes of this type.  相似文献   

19.
Synthesis, Structure, and Properties of [nacnac]MX3 Compounds (M = Ge, Sn; X = Cl, Br, I) Reactions of [nacnac]Li [(2,6‐iPr2C6H3)NC(Me)C(H)C(Me)N(2,6‐iPr2C6H3)]Li ( 1 ) with SnX4 (X = Cl, Br, I) and GeCl4 in Et2O resulted in metallacyclic compounds with different structural moieties. In the [nacnac]SnX3 compounds (X = Cl 2 , Br 3 , I 4 ) the tin atom is five coordinated and part of a six‐membered ring. The Sn–N‐bond length of 3 is 2.163(4) Å and 2.176(5) Å of 4 . The five coordinated germanium of the [nacnac]GeCl3 compound 5 shows in addition to the three chlorine atoms further bonds to a carbon and to a nitrogen atom. In contrast to the known compounds with the [nacnac] ligand the afore mentioned reaction creates a carbon–metal‐bond (1.971(3) Å) forming a four‐membered ring. The Ge–N bond length (2.419(2) Å) indicates the formation of a weakly coordinating bond.  相似文献   

20.
The B‐(triphenylgermyl)borazines 4 a and 4 b , the 1,2‐bis(dimethylamino)‐1,2‐bis(triphenylgermyl)‐diborane(4), 5 , and the (2,2,6,6‐tetramethylpiperidino)(triphenylgermyl)‐boranes 6 and 7 were prepared by allowing LiGePh3 to react with the corresponding B‐bromoborazines and aminochloroboranes, respectively. BH3 dissolved in thf readily adds to LiGePh3 generating Li(H3BGePh3), 8 a , in thf solution. Addition of N‐bases to the solution of 8 a produced (tmen · thf)Li(H3BGePh3), 8 b , and dimeric (py)2Li(H3BGePh3), 8 c . The borazine ring in 4 b is distorted into a boat shape. In 5 the NBGe planes are twisted against each other by 85°. Comparison with analogous (triphenylstannyl)boranes points to a more pronounced steric effect of the Ph3Ge group over the Ph3Sn group due to the shorter B–Ge bond. A fairly short B–Ge bond is found for the (triphenylgermyl)trihydroborates. The molecular structure of (Et2O)3LiGePh3 shows compressed C–Ge–C bond angles. Its molecular parameters fit well into the series LnLiEPh3 (E = Si, Sn, Pb).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号