首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The functionalization of photocatalytic metal oxide nanoparticles of TiO2, ZnO, WO3 and CuO with amine-terminated (oleylamine) and thiol-terminated (dodecane-1-thiol) alkyl-chain ligands was studied under ambient conditions. A high selectivity was observed in the binding specificity of a ligand towards nanoparticles of these different oxides. It was observed that oleylamine binds stably to only TiO2 and WO3, whereas dodecane-1-thiol binds stably only to ZnO and CuO. Similarly, polar-to-nonpolar solvent phase transfer of TiO2 and WO3 nanoparticles could be achieved by using oleylamine, but not dodecane-1-thiol, whereas the opposite holds for ZnO and CuO. The surface chemistry of ligand-functionalized nanoparticles was probed by attenuated total reflectance (ATR)-FTIR spectroscopy, which enabled the occupation of the ligands at the active sites to be elucidated. The photostability of the ligands on the nanoparticle surface was determined by the photocatalytic self-cleaning properties of the material. Although TiO2 and WO3 degrade the ligands within 24 h under both UV and visible light, ligands on ZnO and CuO remain unaffected. The gathered insights are also highly relevant from an application point of view. As an example, because the ligand-functionalized nanoparticles are hydrophobic in nature, they can be self-assembled at the air-water interface to give nanoparticle films with demonstrated photocatalytic as well as anti-fogging properties.  相似文献   

2.
3.
Characterization of physicochemical properties of nanoparticles in aqueous environment prior to conducting hazard studies is strongly recommended by many scientific organizations. In this work we studied the dissolution behaviour and physicochemical properties of carbon based nanoparticles in aqueous solution. The time evolution of the size distribution and the state of dispersion of carbon black and carbon nanotubes in physiological solution have been investigated by means of Dynamic Light Scattering technique. The influence of mechanical agitation such as sonication and stirring on the agglomeration state and particle size distribution has been investigated. However, such processes seem to have little or no effect as far as agglomeration is concerned.  相似文献   

4.
Hollow SiO2/TiO2 nanoparticles decorated with Ag nanoparticles (NPs) of controlled size (Ag@HNPs) were fabricated in order to enhance visible‐light absorption and improve light scattering in dye‐sensitized solar cells (DSSCs). They exhibited localized surface plasmon resonance (LSPR) and the LSPR effects were significantly influenced by the size of the Ag NPs. The absorption peak of the LSPR band dramatically increased with increasing Ag NP size. The LSPR of the large Ag NPs mainly increased the light absorption at short wavelengths, whereas the scattering from the SiO2/TiO2 HNPs improved the light absorption at long wavelengths. This enabled the working electrode to use the full solar spectrum. Furthermore, the SiO2 layer thickness was adjusted to maximize the LSPR from the Ag NPs and avoid corrosion of the Ag NPs by the electrolyte. Importantly, the power conversion efficiency (PCE) increased from 7.1 % with purely TiO2‐based DSSCs to 8.1 % with HNP‐based DSSCs, which is an approximately 12 % enhancement and can be attributed to greater light scattering. Furthermore, the PCEs of Ag@HNP‐based DSSCs were 11 % higher (8.1 vs. 9.0 %) than the bare‐HNP‐based DSSCs, which can be attributed to LSPR. Together, the PCE of Ag@HNP‐based DSSCs improved by a total of 27 %, from 7.1 to 9.0 %, due to these two effects. This comparative research will offer guidance in the design of multifunctional nanomaterials and the optimization of solar‐cell performance.  相似文献   

5.
带相反电荷的聚电解质在水溶液中能通过静电相互作用自组装形成壳聚糖-海藻酸盐纳米粒。利用动态光散射纳米粒度分析仪考察了钙离子及壳聚糖对粒子粒径的影响。结果表明:钙离子的存在可使粒子粒径从268.5nm降为203.4nm,但随着钙离子含量的继续升高,粒径迅速增大,当钙离子浓度大于0.45g/L时形成凝胶。壳聚糖含量的增加和蛋白的包裹均会使粒径增大。所制备的纳米粒对BSA具有较高的包栽能力,并有一定的缓释作用。当壳聚糖投料量增加时,可使BSA在pH=7.4的PBS中的释放减慢。  相似文献   

6.
An amino‐acid‐based hydrophobically modified biocompatible copolymer, poly[(sodium N‐acryloyl‐L ‐valinate)‐co‐(N‐octylacrylamide)] was synthesized and characterized. Techniques such as fluorescence probes, DLS, and TEM were used to investigate its aggregation behavior in aqueous solution. The copolymer was observed to form micellar aggregates having diameters in the nanometer range in aqueous solution (pH = 8) through inter‐chain hydrophobic association. This behavior was found to be similar to that of poly[(sodium N‐acryloyl‐L ‐valinate)‐co‐(N‐dodecylacrylamide)]. The compact micellar nanostructures were observed to be stable with respect to changes of pH and temperature. The encapsulation and release of griseofulvin, a hydrophobic model drug, was studied.

  相似文献   


7.
The mixture of polyisopirene (PI) and sodium-2-diethylhexyl sulfosuccinate /decane/water microemulsion (ME) at AOT to water molar ratio (X = 30) and droplet mass fraction (mf,drop = 0.08) was studied with dynamic light scattering and small-angle X-ray scattering (SAXS). The light scattering was used to obtain the diffusion coefficient of Brownian motion of the nano-droplets at different polymer concentrations and molecular weights (1000 and 4700) in the ME. The dynamics of the nano-droplets decreased with the increase of molecular weight (from 1000 to 4700) and concentration (from 0.01 to 0.09) of PI. The study of the structure by SAXS showed that with increase of PI (MW = 1000) mass fraction from 0.01 to 0.09 at ME, the size of the droplets changes from 4.5 to 4.3 nm and with increase of PI (MW = 4700) concentration at ME, the size of droplets changes from 4.8 to 4.4 nm. The size ratio of droplets to polymer decreased with increase of concentration and molecular weight of polymer and also the interaction between the droplets increased with increase of polymer concentration.  相似文献   

8.
采用溶胶-凝胶法制备了TiO2-SiO2纳米粒子.通过X-射线衍射谱、透射电子显微镜等对纳米粒子进行了表征.研究了TiO2-SiO2纳米粒子与核糖核酸(RNA)的相互作用,建立了基于纳米粒子与RNA吸附反应,二级散射光谱法测定痕量RNA的新方法.方法的线性范围是0.005~5 mg/L; 检出限为1.46 μg/L.方法用于RNA合成样品的测定,回收率为99.4%~103.9%;相对标准偏差为019%~0.24%.  相似文献   

9.
A series of gold nanoparticles (AuNPs) stabilized by monodentate, bidentate, and tridentate thiolate calix[n]arene ligands 1 – 3 was prepared by using the Brust–Schiffrin two‐phase direct synthesis and characterized with NMR spectroscopy, elemental analysis, transmission electron microscopy (TEM), and X‐ray photoelectron spectroscopy (XPS). The experimental data show that the particular multidentate structure of calix[n]arene derivatives 2 and 3 introduces a control element in the preparation of the gold nanoparticles that allows, in the particular experimental conditions here reported, to obtain very small (≈1 nm) AuNPs. These are the first experimental findings that identify a role of ligand “denticity” in the determination of the nuclearity of nanoparticles.  相似文献   

10.
Atomic‐scale relationships between the structure of TiO2 surfaces and the physicochemical properties of surface sites, functional for titania‐based applications, can be obtained from IR spectroscopy by using carbon monoxide (CO) as a molecular probe. In the literature, it is reported that strongly unsaturated cationic Ti sites (Lewis acid), which are important for reactivity, should cause a large upshift of the CO stretching frequency. By using IR spectroscopy of CO on TiO2 nanomaterials and theoretical analyses, here this model is challenged. It is shown that the stretching frequency of adsorbed CO results from a facet‐dependent and synergic CO–surface donation (upshift) ‐ surface–CO backdonation (downshift) mechanism. These results imply that the interaction of adsorbed molecules with the Ti centers is tuned by the surface oxygen atoms of the first coordination sphere, which play an active role as indirect electron density donors (Lewis base).  相似文献   

11.
CeO2 nanoparticles have been proven to be competent photocatalysts for environmental applications because of their strong redox ability, nontoxicity, long-term stability, and low cost. We have synthesized CeO2 nanoparticles via solution combustion method using ceric ammonium nitrate as an oxidizer and ethylenediaminetetraacetic acid (EDTA) as fuel at 450 °C. These nanoparticles exhibit good photocatalytic degradation and antibacterial activity. The obtained product was characterized by various techniques. X-ray diffraction data confirms a cerianite structure: a cubic phase CeO2 having crystallite size of 35 nm. The infrared spectrum shows a strong band below 700 cm−1 due to the Ce−O−Ce stretching vibrations. The UV/Vis spectrum shows maximum absorption at 302 nm. The photoluminescence spectrum shows characteristic peaks of CeO2 nanoparticles. Scanning electron microscopy (SEM) images clearly show the presence of a porous network with a lot of voids. From transmission electron microscopy (TEM) images, it is clear that the particles are almost spherical, and the average size of the nanoparticles is found to be 42 nm. CeO2 nanoparticles exhibit photocatalytic activity against trypan blue at pH 10 in UV light, and the reaction follows pseudo first-order kinetics. Finally, CeO2 nanoparticles also reduce CrVI to CrIII and show antibacterial activity against Pseudomonas aeruginosa.  相似文献   

12.
An investigation of hydrogen production with a series of Au/TiO2 photocatalysts reveals that the Au nanoparticles play different roles depending on the wavelength of the light irradiation. Under visible‐light irradiation, the photoactivity is primarily controlled by the intensity of the Au surface plasmon band, whereas under UV irradiation the Au nanoparticles act as co‐catalysts with TiO2.  相似文献   

13.
采用水热法在导电玻璃FTO导电面上沉积TiO2四棱柱阵列; 并以其为基体, 分别采用聚乙烯基吡咯 烷酮(PVP)还原Tollens试剂以及柠檬酸三钠(TSC)还原硝酸银溶液, 将Ag纳米粒子(AgNPs)沉积在TiO2四棱柱阵列上形成TiO2@AgNPs-PVP和TiO2@AgNPs-TSC微纳结构作为表面增强拉曼散射(SERS)基底. 实验结果表明, Ag纳米粒子在TiO2四棱柱阵列上的尺寸和分布可通过改变Tollens试剂的浓度和TSC还原硝酸银溶液的反应时间来调控, 进而优化基底的SERS灵敏度. TiO2@AgNPs-PVP微纳结构对罗丹明6G(R6G)的检出限为10-12 mol/L, 对低活性小分子三聚氰胺的检出限为0.01 mg/mL; TiO2@AgNPs-TSC微纳结构对R6G的检出限为10-10 mol/L, 对三聚氰胺的检出限为0.01 mg/mL. TiO2@AgNPs-PVP和TiO2@AgNPs-TSC微纳结构基底的SERS活性、 循环可回收性与还原剂种类紧密相关: 包覆在Ag纳米粒子上的PVP可以作为隔离层避免Ag纳米粒子直接接触, 防止电磁场耦合作用减弱, 增强基底的SERS活性; 同时, PVP是一种水性聚合物, 有较强的亲水性, 作为循环可回收SERS基底使用时, 吸附小分子物质清洗难度较大.  相似文献   

14.
The so‐called colloidal template synthesis has been applied to the preparation of surface‐engineered nanoadsorbents. Colloidal microporous organic network nanotemplates (C‐MONs), which showed a high surface area (611 m2 g?1) and enhanced microporosity, were prepared through the networking of organic building blocks in the presence of poly(vinylpyrrolidone) (PVP). Owing to entrapment of the PVP in networks, the C‐MONs showed good colloidal dispersion in EtOH. MoS2 precursors were incorporated into the C‐MONs and heat treatment afforded core–shell‐type C@MoS2 nanoparticles with a diameter of 80 nm, a negative zeta potential (?39.5 mV), a high surface area (508 m2 g?1), and excellent adsorption performance towards cationic dyes (qmax=343.6 and 421.9 mg g?1 for methylene blue and rhodamine B, respectively).  相似文献   

15.
16.
17.
As a conceptual study, In0 nanoparticles are obtained by NaBH4‐driven reduction of InCl3 · 4H2O and transferred from a polar/hydrophilic diethylene glycol phase to a non‐polar hydrophobic dodecane phase for purification and stabilization. Finally, the In0 nanoparticles are oxidized via a Laux‐like reaction with nitrobenzene to In2O3 nanoparticles. The challenge of the reaction is to perform the final oxidation to In2O3 under mild conditions with the colloidal stability, particle size and particle size distribution of the initial In0 nanoparticles retained. To this concern, the mean diameter of the initial In0 nanoparticles changed from 11(1) to 14(2) nm of the oxidized In2O3 nanoparticles. Such multi‐step reaction, including reduction, nucleation, phase transfer, exchange of surface capping and oxidation are of increasing importance for nanoparticles. Especially, Laux‐type conditions with nitrobenzene as a molecular oxidizing agent of nanoparticles have not been used till now. Particle size, size distribution and chemical composition of the In0 and In2O3 nanoparticles are analyzed by DLS, SEM, XRD, FT‐IR and HRTEM.  相似文献   

18.
19.
Designing the photoanode structure in dye‐sensitized solar cells (DSSCs) is vital to realizing enhanced power conversion efficiency (PCE). Herein, novel multifunctional silver‐decorated porous titanium dioxide nanofibers (Ag/pTiO2 NFs) made by simple electrospinning, etching, and chemical reduction processes are introduced. The Ag/pTiO2 NFs with a high surface area of 163 m2 g?1 provided sufficient dye adsorption for light harvesting. Moreover, the approximately 200 nm diameter and rough surface of the Ag/pTiO2 NFs offered enough light scattering, and the enlarged interpores among the NFs in the photoanode also permitted electrolyte circulation. Ag nanoparticles (NPs) were well dispersed on the surface of the TiO2 NFs, which prevented aggregation of the Ag NPs after calcination. Furthermore, a localized surface plasmon resonance effect by the Ag NPs served to increase the light absorption at visible wavelengths. The surface area and amount of Ag NPs was optimized. The PCE of pTiO2 NF‐based DSSCs was 27 % higher (from 6.2 to 7.9 %) than for pure TiO2 NFs, whereas the PCE of Ag/pTiO2 NF‐based DSSCs increased by about 12 % (from 7.9 to 8.8 %). Thus, the PCE of the multifunctional pTiO2 NFs was improved by 42 %, that is, from 6.2 to 8.8 %.  相似文献   

20.
以商用TiO2P25为催化剂,分别在TiO2/UV/O2和TiO2/UV/N2两种体系下进行降解对氯硝基苯(pCNB)试验.采用ESR对两种体系下光催化反应形成的·OH进行测定,利用LC-MS对两种体系下反应形成的中间产物进行了定性和定量分析,最后对pCNB降解过程中氯和硝基的存在形式进行了研究.结果表明:TiO2/UV/O2体系的催化降解效果要明显优于TiO2/UV/N2体系;两种反应体系都有·OH产生,并且TiO2/UV/O2体系产生的·OH的量多于TiO2/UV/N2体系产生的·OH的量;TiO2/UV/O2体系形成的中间产物的种类要多于TiO2/UV/N2体系形成的,苯环上的氢、氯、硝基均可被·OH取代形成对硝基酚(pNP)、5-氯-2-硝基酚(5-C-2-PN)等酚类物质;两种体系下均有Cl-和NO2-存在,其中Cl-生成势与pCNB的去除势一致,只有TiO2/UV/O2体系中存在NO3-.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号