首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Atomically precise metal nanoclusters (NCs) with unique optical properties and abundant catalytic sites are promising in photocatalysis. However, their light-induced instability and the difficulty of utilizing the photogenerated carriers for photocatalysis pose significant challenges. Here, MAg24 (M=Ag, Pd, Pt, and Au) NCs doped with diverse single heteroatoms have been encapsulated in a metal–organic framework (MOF), UiO-66-NH2, affording MAg24@UiO-66-NH2. Strikingly, compared with Ag25@UiO-66-NH2, the MAg24@UiO-66-NH2 doped with heteroatom exhibits much enhanced activity in photocatalytic hydrogen production, among which AuAg24@UiO-66-NH2 presents the best activity up to 3.6 mmol g−1 h−1, far superior to all other counterparts. Moreover, they display excellent photocatalytic recyclability and stability. X-ray photoelectron spectroscopy and ultrafast transient absorption spectroscopy demonstrate that MAg24 NCs encapsulated into the MOF create a favorable charge transfer pathway, similar to a Z-scheme heterojunction, when exposed to visible light. This promotes charge separation, along with optimized Ag electronic state, which are responsible for the superior activity in photocatalytic hydrogen production.  相似文献   

2.

Bi2WO6/UiO-66-NH2 photocatalysts were fabricated through solvothermal method using acetic acid as template. The photocatalytic performance of as-fabricated composites was highly improved under simulated visible light due to the addition of UiO-66-NH2. The structural and chemical properties of the composites were characterized through FTIR, XRD, XPS, SEM, BET, UV–vis DRS and PL. After 90 min of visible light irradiation, the RhB at an initial concentration of 10 mg·L?1 in the solution was degraded by 99.4% due to the addition of 10 mg of the composite. There was no significant decrease in the photocatalytic activity even after four rounds of cycles. The free radical capture experiments indicate that the photogenerated holes (h+) were the main active sites. The possible photocatalytic degradation mechanism was proposed as the specific surface area of the composite was enlarged due to the uniform distribution of UiO-66-NH2 on the surface of Bi2WO6. The electron–hole pairs recombination rate was decreased due to the photogenerated electrons (e?) on the CB of Bi2WO6 which can be rapidly transferred to the CB of UiO-66-NH2 and the photogenerated holes of UiO-66-NH2 transferred to the VB of Bi2WO6. Meanwhile, the RhB was directly oxidized to H2O and CO2 by h+ to achieve the purification effect.

  相似文献   

3.
Lewis-base sites have been widely applied to regulate the properties of Lewis-acid sites in electrocatalysts for achieving a drastic technological leap of lithium-oxygen batteries (LOBs). Whereas, the direct role and underlying mechanism of Lewis-base in the chemistry for LOBs are still rarely elucidated. Herein, we comprehensively shed light on the pivotal mechanism of Lewis-base sites in promoting the electrocatalytic reaction processes of LOBs by constructing the metal–organic framework containing Lewis-base sites (named as UIO-66-NH2). The density functional theory (DFT) calculations demonstrate the Lewis-base sites can act as electron donors that boost the activation of O2/Li2O2 during the discharged-charged process, resulting in the accelerated reaction kinetics of LOBs. More importantly, the in situ Fourier transform infrared spectra and DFT calculations firstly demonstrate the Lewis-base sites can convert Li2O2 growth mechanism from surface-adsorption growth to solvation-mediated growth due to the capture of Li+ by Lewis-base sites upon discharged process, which weakens the adsorption energy of UIO-66-NH2 towards LiO2. As a proof of concept, LOB based on UIO-66-NH2 can achieve a high discharge specific capacity (12 661 mAh g−1), low discharged-charged overpotential (0.87 V) and long cycling life (169 cycles). This work reveals the direct role of Lewis-base sites, which can guide the design of electrocatalysts featuring Lewis-acid/base dual centers for LOBs.  相似文献   

4.
实际废水中存在的离子会对有机污染物的光催化降解产生影响。以ZrCl4和2,5-二羟基对苯二甲酸为原料,通过水热合成法成功制备了金属有机骨架材料UIO-66-2OH。通过红外(IR)、X射线粉末衍射(XRD)、X射线光电子能谱(XPS)和扫描电子显微镜(SEM)对UIO-66-2OH的结构进行表征。利用水中常见的金属阳离子和无机阴离子,探索UIO-66-2OH的光催化性能。研究发现,金属阳离子Fe3+和无机阴离子HCO3-、CO32-可以加快光催化降解的速度。然而,金属离子Na+、K+、Ca2+、Mg2+、Cu2+和无机阴离子Cl-、SO42-、PO43-会抑制光催化性能,且离子价态越高,抑制效果越明显。  相似文献   

5.
The surface modification of Ag/Ag2CO3 with Fe(III) ions has been achieved through simply photoreduction‐impregnation method. The obtained products were characterized by means of X‐ray diffraction (XRD), scanning electron microscopy (SEM), X‐ray photoelectron spectroscopy (XPS), and UV‐vis absorption spectroscopy. Under visible‐light irradiation (γ>420 nm), the Fe(III)/Ag/Ag2CO3 sample displays a higher photocatalytic activity and stability than pure Ag2CO3 and Ag/Ag2CO3 samples for the degradation of methyl orange (MO). The improved photocatalytic activity and stability of this ternary system could be ascribed to the synergetic effect between Ag nanoparticles and Fe(III) nanocluster. The metallic Ag nanoparticles cause an obviously enhanced visible‐light absorption to produce more photogenerated charges, while the Fe(III) works as an active site for the following oxygen reduction to reduce the recombination rate of photogenerated electrons and holes.  相似文献   

6.
Efficient separation of photogenerated electrons and holes is of key importance in photocatalysis. Tuning the charge separation pathway is significant but still suffering from low efficiency for the charge extraction from semiconductors. Herein, taking 2D g-C3N4 (CN) nanosheets as a model photocatalyst, it was found the decoration of homophase junction between brookite TiO2 rods and nanoparticles (BN-BR) onto CN can effectively modulate photogenerated charge extraction and transfer in BN-BR/CN composites. The BN-BR/CN exhibits a remarkably enhanced photocatalytic H2 evolution under visible light irradiation (λ>420 nm) compared with the single component. A continuous electron transfer channel constructed by an interfacial chemical bond Ti−O−N between CN and brookite rods (BR) and BN-BR homophase junction between brookite nanoparticles and rods was proposed to benefit the charge extraction and transfer. This work provides a strategy to tune the charge separation and transfer to facilitate the photocatalytic performance in heterogeneous photocatalysis.  相似文献   

7.
The photocatalytic reduction of toxic Cr(VI), to green Cr(III) by visible light, is highly required. Metal-organic frameworks have been waged more and more devotion in the field of environmental remediation. Diversification along with functionalization is still thought-provoking and crucial for the progress of metal-organic framework (MOF)-based high activity materials. Herein, a succession of UiO-66-NH2@ZnIn2S4 composites with varying amount of UiO-66-NH2 is prepared by the facile solvothermal technique. Synergetic effect for Cr(VI) reduction is assessed under the influence of visible light (λ > 420 nm). UiO-66-NH2 octahedron is detained by ZnIn2S4 nanoflakes. The obvious enhancement in activity is observed which is credited to the well-suited energy band construction and close interaction between the interface of ZnIn2S4 and UiO-66-NH2, which leads to effective transfer and separation of photogenerated carriers. Synergistic effect could be evidently understood from the PL and UV -spectroscopy, after molding into heterostructure of UiO-66-NH2@ZnIn2S4. In addition, UiO-66-NH2@ZnIn2S4 composites exhibited good stability in photocatalytic reduction. Consequently, this UiO-66-NH2 constructed composite has high potential in the field of environmental remediation.  相似文献   

8.
Constructing continuous proton transfer channels used metal-organic frameworks (MOFs), which can effectively improve proton conductivity of proton exchange membrane, have recently attracted a lot of attentions. MOFs have relatively harsh operating environment in phosphoric acid-doped (PA-doped) high-temperature proton exchange membranes (HTPEMs). However, there are few reports on the stability and state of MOFs in HTPEMs after PA doping. In this work, a series of MOFs (UIO-66, UIO-66-COOH, UIO-66-NH2, UIO-66-SO3H, MIL-101(Cr), and MIL-53(Al)) are selected to investigate their stability via simulating the operating environment for the first time. Composite membranes based on the MOFs are prepared to explore the influence of the stability and state of MOFs on HTPEMs properties. These results indicate that proton transfer channels are constructed in two different styles. After soaking in PA of UIO-66, UIO-66-COOH, MIL-101(Cr), and MIL-53(Al) at 160 °C, metal ions leave the ligands and dissolve, while the ligands are kept in the membranes. These ligands can provide proton transport sites in the membranes and help to construct proton transfer channels. UIO-66-NH2 and UIO-66-SO3H are dissolved completely in PA, leading to continuous nanopores. The proton transfer channels are constructed using the nanopores. From the results, we can infer that constructing proton transfer channels is an effectively method to improve the membranes performance, but the transmission mechanism needs to be revealed carefully.  相似文献   

9.
Solar-driven CO2 reduction reaction (CO2RR) is largely constrained by the sluggish mass transfer and fast combination of photogenerated charge carriers. Herein, we find that the photocatalytic CO2RR efficiency at the abundant gas-liquid interface provided by microdroplets is two orders of magnitude higher than that of the corresponding bulk phase reaction. Even in the absence of sacrificial agents, the production rates of HCOOH over WO3 ⋅ 0.33H2O mediated by microdroplets reaches 2536 μmol h−1 g−1 (vs. 13 μmol h−1 g−1 in bulk phase), which is significantly superior to the previously reported photocatalytic CO2RR in bulk phase reaction condition. Beyond the efficient delivery of CO2 to photocatalyst surfaces within microdroplets, we reveal that the strong electric field at the gas-liquid interface of microdroplets essentially promotes the separation of photogenerated electron-hole pairs. This study provides a deep understanding of ultrafast reaction kinetics promoted by the gas-liquid interface of microdroplets and a novel way of addressing the low efficiency of photocatalytic CO2 reduction to fuel.  相似文献   

10.
采用自组装生长聚苯乙烯胶体模板和溶胶-凝胶法,制备出三维(3D)有序结构In掺杂TiO2(IO-TiO2-In)薄膜可见光催化剂.光催化实验证明,IO-TiO2-In薄膜降解甲醛的可见光活性是TiO2和三维有序结构TiO2(IOTiO2)薄膜的5倍.利用X射线电子衍射(XRD)谱、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)和紫外-可见(UV-Vis)漫反射吸收光谱确定了催化剂的晶相结构、表面微结构和能带结构.结果表明,IO-TiO2-In薄膜具有锐钛矿型三维有序结构,与TiO2相比,增加了比表面积,提高光的利用率;掺入的In离子在薄膜表面形成In2O3和O-In-Clx(x=1,2)物种,既增强可见光的吸收,又有效地促进了光生载流子的分离,提高了光生载流子在固/气界面参加光催化反应的利用率,使催化剂的可见光催化活性显著提高.  相似文献   

11.
Mixed-matrix membranes (MMMs) with combination of two distinct dimensional nanofillers (such as 1D-3D, 2D-3D, or 3D-3D, etc.) have drawn special attention for gas separation applications due to their concerted effects on gas permeation and mechanical properties. An amine-functionalized 1D multiwalled carbon nanotube (NH2-MWCNT) with exceptional mechanical strength and rapid gas transport was crosslinked with an amine-functionalized 3D metal-organic framework (UiO-66-NH2) with high CO2 affinity in a Schiff base reaction. The resultant crosslinked mixed-dimensional nanostructure was used as a nanofiller in a polysulfone (PSf) polymer matrix to explore the underlying synergy between 1D and 3D nanostructures on the gas separation performance of MMMs. Cross-sectional scanning electron microscopy and mapping revealed the homogenous dispersion of UiO-66@MWCNT in the polymer matrix. The MMM containing 5.0 wt. % UiO-66@MWCNT demonstrated a superior permeability 8.3 Barrer as compared to the 4.2 Barrer of pure PSf membrane for CO2. Moreover, the selectivity (CO2/CH4) of this MMM was enhanced to 39.5 from the 28.0 observed for pure PSf under similar conditions of pressure and temperature.  相似文献   

12.
Two-dimensional (2D) graphitic carbon nitride (g-C3N4) has invoked significant interest for photocatalytic applications for its excellent features such as high surface area, visible light absorption, and easy transportation of photogenerated charge carriers, but the most reported g-C3N4 show relatively low photoactivity due to inferior conductivity and rapid recombination of carriers. These can be overcome by inducing porosity in g-C3N4, followed by exfoliation and combining with other materials. Herein, we synthesize nanocavity-assisted oxygen-deficient Ti3+ self-doped blue TiO2(B) nanorods (BT) and integrate them on exfoliated porous g-C3N4 (PCN). The synthesized materials are tested for photocatalytic conversion of CO2 into solar fuels (H2, CO, and CH4). The fabricated BT/PCN heterostructures exhibit higher photocatalytic CO2 conversion activity and 92% CO-evolving selectivity than BT and PCN. The enhancement in activity of BT/PCN can be attributed to the efficient separation and transportation of charge carriers, facilitated by the unique properties of BT, PCN, and their synergistic interactions. We believe that these results can contribute to the improvement of cost-effectiveness, feasibility, and overall performance for real photocatalytic systems.  相似文献   

13.
The development of photocatalysts that can efficiently convert CO2 into other valuable chemicals via photocatalytic and photothermal processes is critical to the current energy and climate change problems. However, low separation of charge carriers, short light absorption, and low activation of CO2 molecules in photocatalysis limit the catalysts’ performance. Designing 1D heterostructures containing multiple materials can be a viable solution as their unique properties, such as high surface area, short diffusion paths of charge carriers, and enhanced light absorption properties, can potentially promote the reaction rate and product selectivity. In this review, we summarize the general features of heterostructures involving nanotubes, nanowires, nanorods, and nanobelts. Next, the main synthesis strategies are briefly highlighted, followed by the most important findings concerning their catalytic activity in the photothermal and photocatalytic CO2 reduction processes. The article concludes with some of the current challenges and potential solutions.  相似文献   

14.
Metal-organic frameworks (MOFs) have been shown to be an excellent platform in photocatalysis. However, to suppress electron–hole recombination, a Pt cocatalyst is usually inevitable, especially in photocatalytic H2 production, which greatly limits practical application. Herein, for the first time, monodisperse, small-size, and noble-metal-free transitional-metal phosphides (TMPs; for example, Ni2P, Ni12P5), are incorporated into a representative MOF, UiO-66-NH2, for photocatalytic H2 production. Compared with the parent MOF and their physical mixture, both TMPs@MOF composites display significantly improved H2 production rates. Thermodynamic and kinetic studies reveal that TMPs, behaving similar ability to Pt, greatly accelerate the linker-to-cluster charge transfer, promote charge separation, and reduce the activation energy of H2 production. Significantly, the results indicate that Pt is thermodynamically favorable, yet Ni2P is kinetically preferred for H2 production, accounting for the higher activity of Ni2P@UiO-66-NH2 than Pt@UiO-66-NH2.  相似文献   

15.
Porous graphitic carbon nitride (g-C3N4) was prepared by dicyandiamide and urea via the pyrolysis method, which possessed enhanced visible-light-driven photocatalytic performance. Its surface area was increased from 17.12 to 48.00 m2/g. The porous structure not only enhanced the light capture capacity, but also accelerated the mass transfer ability. The Di (Dicyandiamide)/Ur (Urea) composite possessed better photocatalytic activity for Rhodamine B in visible light than that of g-C3N4. Moreover, the Di/Ur-4:5 composite showed the best photoactivity, which was almost 5.8 times that of g-C3N4. The enhanced photocatalytic activity showed that holes and superoxide radical played a key role in the process of photodegradation, which was ascribed to the enhanced separation of photogenerated carriers. The efficient separation of photogenerated electron-hole pairs may be owing to the higher surface area, O dopant, and pore volumes, which can not only improve the trapping opportunities of charge carriers but also the retarded charge carrier recombination. Therefore, it is expected that the composite would be a promising candidate material for organic pollutant degradation.  相似文献   

16.
Porous metal‐organic frameworks (MOFs) loading metal nanoparticles to form a composite photocatalyst demonstrated unique advantages. Modification of the electron donating group on the aromatic linkers of MOFs could increase the absorption range of light, thereby increasing the photocatalytic activity. In this study, we prepared a composite photocatalyst using a stable NH2‐functionalized MOF (UiO‐66‐NH2) to load semiconductor Ag/AgBr nanoparticles, and the resultant composites have intense optical absorption throughout visible light range. The greatly enhanced optical absorption and the unique hetero‐junction between Ag/AgBr and UiO‐66‐NH2 render efficient separation and utilization of photogenerated electron‐hole pairs. Therefore, Ag/AgBr@UiO‐66‐NH2 showed much more excellent photocatalytic activity, compared with unmodified UiO‐66 loading Ag/AgBr (Ag/AgBr@UiO‐66) and reported AgX@MOF catalysts. Moreover, the composite photocatalysts showed excellent stability during cycling experiment.  相似文献   

17.
A highly efficient Z‐scheme photocatalytic system constructed with 1D CdS and 2D CoS2 exhibited high photocatalytic hydrogen‐evolution activity of 5.54 mmol h?1 g?1 with an apparent quantum efficiency of 10.2 % at 420 nm. More importantly, its interfacial charge migration pathway was unraveled: The electrons are efficiently transferred from CdS to CoS2 through a transition atomic layer connected by Co–S5.8 coordination, thus resulting in more photogenerated carriers participating in surface reactions. Furthermore, the charge‐trapping and charge‐transfer processes were investigated by transient absorption spectroscopy, which gave an estimated charge‐separation yield of approximately 91.5 % and a charge‐separated‐state lifetime of approximately (5.2±0.5) ns in CdS/CoS2. This study elucidates the key role of interfacial atomic layers in heterojunctions and will facilitate the development of more efficient Z‐scheme photocatalytic systems.  相似文献   

18.
Herein, an S-scheme hollow TiO2@Bi2MoO6 heterojunction was synthesized for photocatalytic reduction of CO2 under simulated sunlight. Among all prepared composites, the TiO2@Bi2MoO6 with 20% of TiO2 exhibited the highest CO yield (183.97 μmol/g within 6 h), which was 4.0 and 2.4 times higher than pristine TiO2 and Bi2MoO6, respectively. The improved photocatalytic activity may be due to the formation of S-scheme heterojunction to promote the separation and transfer of photogenerated charge carriers. Additionally, this hollow structure provided abundant sites in terms of CO2 adsorption and activation. Meanwhile, the photogenerated charge transfer mechanism of the S-scheme was verified by work function calculations, Electron paramagnetic resonance (EPR) measurements as well as X-ray photoelectron spectroscopy (XPS). This research presents a novel approach to improve photocatalytic reduction of CO2 via morphology modulation and the fabrication of S-scheme heterojunction.  相似文献   

19.
Harnessing solar energy and converting it into renewable fuels by chemical processes, such as water splitting and carbon dioxide (CO2) reduction, is a highly promising yet challenging strategy to mitigate the effects arising from the global energy crisis and serious environmental concerns. In recent years, covalent organic framework (COF)-based materials have gained substantial research interest because of their diversified architecture, tunable composition, large surface area, and high thermal and chemical stability. Their tunable band structure and significant light absorption with higher charge separation efficiency of photoinduced carriers make them suitable candidates for photocatalytic applications in hydrogen (H2) generation, CO2 conversion, and various organic transformation reactions. In this article, we describe the recent progress in the topology design and synthesis method of COF-based nanomaterials by elucidating the structure-property correlations for photocatalytic hydrogen generation and CO2 reduction applications. The effect of using various kinds of 2D and 3D COFs and strategies to control the morphology and enhance the photocatalytic activity is also summarized. Finally, the key challenges and perspectives in the field are highlighted for the future development of highly efficient COF-based photocatalysts.  相似文献   

20.
Yin  Sheng  Shao  Yifan  Hu  Qingsong  Chen  Yong  Ding  Penghui  Xia  Jiexiang  Li  Huaming 《Research on Chemical Intermediates》2021,47(4):1601-1613

A Bi2O3/(BiO)2CO3 (BO/BOC) composite photocatalyst was in situ prepared via calcinating (BiO)2CO3. The as-prepared Bi2O3/(BiO)2CO3 composites displayed enhanced photocatalytic activity for the degradation of RhB under visible light. The structure–activity relationship between catalyst structure and properties was investigated by SEM, XRD, XPS, FTIR, BET, DRS and photoelectrochemical tests. Apart from the increased absorption of visible light, the accelerated charge separation and transfer was achieved via the intimate contact and matched band structure between Bi2O3 and (BiO)2CO3. The formation of heterogeneous structures could promote the production of reactive oxygen species (·O2?) and eventually improve the photocatalytic performance for the removal of organic contaminants. This heating treatment strategy might be extended for improving light absorbance and charge carriers separation for other UV-based photocatalysts.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号