首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Substrate analogues for isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), where the C3 methyl groups were replaced by chlorine, were synthesized and evaluated as substrates for avian farnesyl diphosphate synthase (FPPase). The IPP analogue (3-ClIPP) was a cosubstrate when incubated with dimethylallyl diphosphate (DMAPP) or geranyl diphosphate (GPP) to give the corresponding chlorinated analogues of geranyl diphosphate (3-ClGPP) and farnesyl diphosphate (3-ClFPP), respectively. No products were detected in incubations of 3-ClIPP with 3-ClDMAPP. Incubation of IPP with 3-ClDMAPP gave 11-ClFPP as the sole product. Values of K(M)(3-ClIPP) (with DMAPP) and K(M)(3-ClDMAPP) (with IPP) were similar to those for IPP and DMAPP; however, values of k(cat) for both analogues were substantially lower. These results are consistent with a dissociative electrophilic alkylation mechanism where the rate-limiting step changes from heterolytic cleavage of the carbon-oxygen bond in the allylic substrate to alkylation of the double bond of the homoallylic substrate.  相似文献   

2.
Di‐ and sesterterpene synthases produce C20 and C25 isoprenoid scaffolds from geranylgeranyl pyrophosphate (GGPP) and geranylfarnesyl pyrophosphate (GFPP), respectively. By genome mining of the fungus Emericella variecolor, we identified a multitasking chimeric terpene synthase, EvVS, which has terpene cyclase (TC) and prenyltransferase (PT) domains. Heterologous gene expression in Aspergillus oryzae led to the isolation of variediene ( 1 ), a novel tricyclic diterpene hydrocarbon. Intriguingly, in vitro reaction with the enzyme afforded the new macrocyclic sesterterpene 2 as a minor product from dimethylallyl pyrophosphate (DMAPP) and isopentenyl pyrophosphate (IPP). The TC domain thus produces the diterpene 1 and the sesterterpene 2 from GGPP and GFPP, respectively. Notably, a domain swap of the PT domain of EvVS with that of another chimeric sesterterpene synthase, EvSS, successfully resulted in the production of 2 in vivo as well. Cyclization mechanisms for the production of these two compounds are proposed.  相似文献   

3.
Samples of [4‐2H1]‐1‐deoxyxylulose ( 17a ) and [2‐13C, 4‐2H1]‐1‐deoxyxylulose ( 17b ), have been prepared by modification of known procedures and fed in aqueous solution to twiglets of Eucalyptus globulus. The probes of cineol ( 6 ) isolated from these experiments were analyzed by GC/MS, 2H‐ and 13C‐NMR techniques. In the experiments with 17b , the formation of five isotopomers of 6 could be detected. Their structure and relative abundance demonstrate that the 13C‐label is incorporated to the same extent into the two C5‐units of 6 , and that the 2H label is retained to an extent of 57% in the starter dimethylallyl‐diphosphate unit (DMAPP; 12 ), but completely or almost completely lost in the unit derived from isopentenyl diphosphate (IPP; 11 ), in the elongation step which leads to geranyl diphosphate (GPP; 1 ). These results confirm that the recently discovered mevalonate‐independent pathway to IPP and DMAPP is operative in the biosynthesis of cineol, and indicate, together with previous finding, that, within this pathway, formation of IPP and DMAPP occurs in independent rather than in sequential steps. In addition, the demonstration of different metabolic origins for the olefinic H‐atoms of GPP ( 1 ), the aliphatic C10‐precursor of 6 , paves the way for a realistic interpretation of the strikingly consistent but hitherto unexplained anomalies detected in the natural‐abundance 2H‐NMR spectra of (+)‐ and (−)‐α‐pinene and of (+)‐limonene.  相似文献   

4.
We report the first X‐ray structure of the unique “head‐to‐middle” monoterpene synthase, lavandulyl diphosphate synthase (LPPS). LPPS catalyzes the condensation of two molecules of dimethylallyl diphosphate (DMAPP) to form lavandulyl diphosphate, a precursor to the fragrance lavandulol. The structure is similar to that of the bacterial cis‐prenyl synthase, undecaprenyl diphosphate synthase (UPPS), and contains an allylic site (S1) in which DMAPP ionizes and a second site (S2) which houses the DMAPP nucleophile. Both S‐thiolo‐dimethylallyl diphosphate and S‐thiolo‐isopentenyl diphosphate bind intact to S2, but are cleaved to (thio)diphosphate, in S1. His78 (Asn in UPPS) is essential for catalysis and is proposed to facilitate diphosphate release in S1, while the P1 phosphate in S2 abstracts a proton from the lavandulyl carbocation to form the LPP product. The results are of interest since they provide the first structure and structure‐based mechanism of this unusual prenyl synthase.  相似文献   

5.
[reaction: see text] Type II isopentenyl diphosphate:dimethylallyl diphosphate (IPP:DMAPP) isomerase from Synechocystis PCC 6803 catalyzes the interconversion of IPP and DMAPP. Upon incubation of the enzyme with IPP or DMAPP in 2H2O, one deuterium is incorporated into the C2 methylene of IPP, two deuteriums are incorporated at C4, and three deuteriums are incorporated into the (E)-methyl of DMAPP.  相似文献   

6.
Isopentenyl diphosphate isomerase (IDI) catalyzes the interconversion of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), the basic building blocks of isoprenoid molecules. Two structurally unrelated classes of IDI are known. Type I IPP isomerase (IDI-1) utilizes a divalent metal in a protonation-deprotonation reaction; whereas, the type II enzyme (IDI-2) requires reduced flavin. Epoxy, diene, and fluorinated substrate analogues, irreversible inhibitors of IDI-1, were analyzed as mechanistic probes for IDI-2. 3,4-Oxido-3-methyl-1-butyl diphosphate (eIPP), 3-methylene-4-penten-1-yl diphosphate (vIPP), and 3-(fluoromethyl)-3-buten-1-yl diphosphate (fmIPP) inactivate IDI-2 through formation of covalent adducts with the reduced flavin. UV-visible spectra of the inactivated complexes are consistent with modification of the isoalloxazine ring at position N5. vIPP and fmIPP are also alternate substrates with isomerization competing with alkylation of the flavin cofactor. (Z)-3-(Fluoromethyl)-2-buten-1-yl diphosphate ((Z)-fmDMAPP) and (Z)-3-(difluoromethyl)-2-buten-1-yl diphosphate ((Z)-dfmDMAPP) are alternate substrates, which are isomerized to the corresponding IPP derivatives. The rates of isomerization of fmIPP and (Z)-fmDMAPP are approximately 50-fold less than IPP and DMAPP, respectively. dfmIPP is not an irreversible inhibitor. These studies indicate that the irreversible inhibitors inactivate the reduced flavin required for catalysis by electrophilic alkylation and are consistent with a protonation-deprotonation mechanism for the isomerization catalyzed by IDI-2.  相似文献   

7.
Two chiral naphthylamine‐substituted analogs of Bedaquiline were selected from a series of compounds designed as anti‐tuberculosis drugs based on the structure activity relationship of bedaquiline for synthetic and stereochemical research. The compounds were synthesized from the chiral precursors for the first time, and their absolute configurations were determined by electronic circular dichroism and quantum chemical calculations. Conformational analyses were performed on the compounds to find the stable conformers and get better predicted results. In addition, the in vitro antituberculosis activities of the two compounds were investigated.  相似文献   

8.
Diversity of the biosynthesis of the isoprene units   总被引:1,自引:0,他引:1  
This review covers the biosynthesis of the starter units of terpenoids, isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) via the nonmevalonate pathway together with a new enzyme involved in the conversion of IPP and DMAPP, i.e type 2 IPP isomerase. The biosynthesis of terpenoids produced by actinomycetes is also reviewed. 117 references are cited.  相似文献   

9.
IspH/LytB, an oxygen-sensitive [4Fe-4S] enzyme, catalyzes the last step of the methylerythritol phosphate (MEP) pathway, a target for the development of new antimicrobial agents. This metalloenzyme converts (E)-4-hydroxy-3-methylbut-2-en-1-yl diphosphate (HMBPP) into the two isoprenoid precursors: isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). Here, the synthesis of (S)-[4-2H1]HMBPP and (R)-[4-2H1]HMBPP is reported together with a detailed NMR analysis of the products formed after their respective incubation with E. coli IspH/LytB in the presence of the biological reduction system used by E. coli to reduce the [4Fe-4S] center. (S)-[4-2H1]HMBPP was converted into [4-2H1]DMAPP and (E)-[4-2H1]IPP, whereas (R)-[4-2H1]HMBPP yielded [4-2H1]DMAPP and (Z)-[4-2H1]IPP, hence providing the direct enzymatic evidence that the mechanism catalyzed by IspH/LytB involves a rotation of the CH2OH group of the substrate to display it away from the [4Fe-4S].  相似文献   

10.
Thiolo thiophosphate analogues of isopentenyl diphosphate (IPP), dimethylallyl diphosphate (DMAPP), geranyl diphosphate (GPP), farnesyl diphosphate (FPP), and geranylgeranyl diphosphate (GGPP) were synthesized. Inorganic thiopyrophosphate (SPP(i)) was prepared from trimethyl phosphate in four steps. The tris(tetra-n-butylammonium) salt was then used to convert isopentenyl tosylate to (S)-isopentenyl thiodiphosphate (ISPP). (S)-Dimethylallyl (DMASPP), (S)-geranyl (GSPP), (S)-farnesyl (FSPP), and (S)-geranylgeranyl thiodiphosphate (GGSPP) were prepared from the corresponding bromides in a similar manner. ISPP and GSPP were substrates for avian farnesyl diphosphate synthase (FPPase). Incubation of the enzyme with ISPP and GPP gave FSPP, whereas incubation with IPP and GSPP gave FPP. GSPP was a substantially less reactive than GPP in the chain elongation reaction and was an excellent competitive inhibitor, K(I)(GSPP) = 24.8 microM, of the enzyme. Thus, when ISPP and DMAPP were incubated with FPPase, GSPP accumulated and was only slowly converted to FSPP.  相似文献   

11.
Isopentenyl diphosphate isomerase (IDI) catalyzes the interconversion of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). This is an essential step in the mevalonate entry into the isoprenoid biosynthetic pathway. The isomerization catalyzed by type I IDI involves protonation of the carbon-carbon double bond in IPP or DMAPP to form a tertiary carbocation, followed by deprotonation. Diene analogues for DMAPP (E-2-OPP and Z-2-OPP) and IPP (4-OPP) were synthesized and found to be potent active-site-directed irreversible inhibitors of the enzyme. X-ray analysis of the E.I complex between Escherichia coli IDI and 4-OPP reveals the presence of two isomers that differ in the stereochemistry of the newly formed C3-C4 double bond in the hydrocarbon chain of the inhibitor. In both adducts C5 of the inhibitor is joined to the sulfur of C67. In these structures the methyl group formed upon protonation of the diene moiety in 4-OPP is located near E116, implicating that residue in the protonation step.  相似文献   

12.
The E. coli isopentenyl diphosphate isomerase (IDI) catalyzed reaction of isopentenyl diphosphate (IPP) in D(2)O gives a 66% yield of dimethylallyl diphosphate labeled with deuterium at the (E)-methyl group (d-DMAPP) and a 34% yield of IPP labeled with 1 mol of deuterium at C-2 (d-IPP). This shows that the release to D(2)O of the initial product of the IDI-catalyzed reaction (d-DMAPP) is slower than its conversion to d-IPP. Product dissociation is therefore rate determining for isomerization of IPP with a rate constant k(dis) ≈ k(cat) = 0.08 s(-1). The data provide an estimated rate constant of k(as) = 6 × 10(3) M(-1) s(-1) for binding of DMAPP to E. coli IDI that is similar to rate constants determined for the binding of N-protonated 2-amino ethyl diphosphate intermediate analogs to IDI from yeast [Reardon, J. E.; Abeles, R. H. Biochemistry1986, 25, 5609-5616]. We propose that ligand binding to IDI is relatively slow because there is a significant kinetic barrier to reorganization of the initial encounter complex between enzyme, substrate, and an essential Mg(2+) to form the Michaelis complex where the metal cation bridges the protein and the substrate diphosphate group.  相似文献   

13.
Farnesyl pyrophosphate synthase (FPPS) catalyses the formation of a key cellular intermediate in isoprenoid metabolic pathways, farnesyl pyrophosphate, by the sequential head-to-tail condensation of two molecules of isopentenyl diphosphate (IPP) with dimethylallyl diphosphate (DMAPP). Recently, FPPS has been shown to represent an important target for the treatment of parasitic diseases such as Chagas disease and African trypanosomiasis. Bisphosphonates, pyrophosphate analogues in which the oxygen bridge between the two phosphorus atoms has been replaced by a carbon substituted with different side chains, are able to inhibit the FPPS enzyme. Moreover, nitrogen-containing bisphosphonates have been proposed as carbocation transition state analogues of FPPS. On the basis of structural and kinetic data, different catalytic mechanisms have been proposed for FPPS. By analyzing different reaction coordinates we propose that the reaction occurs in one step through a carbocationic transition state and the subsequent transfer of a hydrogen atom from IPP to the pyrophosphate moiety of DMAPP. Moreover, we have analyzed the role of the active site amino acids on the activation barrier and the reaction mechanism. The structure of the active site is well conserved in the isoprenyl diphosphate synthase family; thus, our results are relevant for the understanding of this important class of enzymes and for the design of more potent and specific inhibitors for the treatment of parasitic diseases.  相似文献   

14.
Six new ( 2 , 4 – 8 ) and two known polyketides with a basic structure of an anthraquinone‐xanthone were isolated from mycelia and culture broth of the fungus Engyodontium album strain LF069. The structures and relative configurations of these compounds were established by spectroscopic means, and their absolute configurations were defined mainly by comparison of quantum chemical TDDFT calculated and experimental ECD spectra. Compounds 2 and 4 – 8 were given the trivial names engyodontochone A ( 2 ) and B–F ( 4 – 8 ). Compounds 5 – 8 represent the first example of a 23,28 seco‐beticolin carbon skeleton. The relative and absolute configurations of two known substances JBIR‐97/98 ( 1 ) and JBIR‐99 ( 3 ) were determined for the first time. All isolated compounds were subjected to bioactivity assays. Compounds 1 – 4 exhibited inhibitory activity against methicillin‐resistant Staphylococcus aureus (MRSA) that was 10‐fold stronger than chloramphenicol.  相似文献   

15.
The terpenoid substrate analogs (7R)-6,7-dihydrogeranylgeranyl diphosphate (6,7-dihydro-GGPP) and (7R)-6,7-dihydrogeranylfarnesyl diphosphate (6,7-dihydro-GFPP) were synthesised from (S)-citronellol and enzymatically converted with nine diterpene and two sesterterpene synthases, respectively. In two cases the substrate analogs were converted into diterpenes in cyclisation reactions corresponding to those observed for the native substrate GGPP, while the cyclisation cascade was disrupted or redirected in the other nine cases, leading to products that were named ruptenes. Several of the isolated ruptenes represent deprotonation products of cationic intermediates that are analogs of the intermediates proposed along the cyclisation cascades for the native substrates GGPP or GFPP, thus giving insights into the complex reaction mechanisms of terpene synthase mediated biosynthesis.  相似文献   

16.
We report the three‐dimensional structure of cyclolavandulyl diphosphate (CLPP) synthase (CLDS), which consecutively catalyzes the condensation of two molecules of dimethylallyl diphosphate (DMAPP) followed by cyclization to form a cyclic monoterpene, CLPP. The structures of apo‐CLDS and CLDS in complex with Tris, pyrophosphate, and Mg2+ ion were refined at 2.00 Å resolution and 1.73 Å resolution, respectively. CLDS adopts a typical fold for cis‐prenyl synthases and forms a homo‐dimeric structure. An in vitro reaction using a regiospecifically 2H‐substituted DMAPP substrate revealed the intramolecular proton transfer mechanism of the CLDS reaction. The CLDS structure and structure‐based mutagenesis provide mechanistic insights into this unprecedented terpene synthase. The combination of structural and mechanistic insights advances the knowledge of intricate terpene synthase‐catalyzed reactions.  相似文献   

17.
IspH in the deoxyxylulose phosphate (DXP) pathway catalyzes the reductive dehydration of (E)-4-hydroxy-3-methyl-2-butenyl diphosphate (HMBPP) to isopentenyl diphosphate (IPP) and its isomer dimethylallyl diphosphate (DMAPP), which are the starting materials for the synthesis of thousands of isoprenoids. Several models have been proposed in the literature to account for this unique transformation, and most of them involve the formation of an allylic radical intermediate. To facilitate trapping and characterizing the proposed intermediates in the IspH-catalyzed reactions, in the present work, we report the synthesis of four isotopically labeled IspH substrate analogues. These isotopically labeled mechanistic probes will be utilized in the future for characterizing the proposed IspH reaction intermediates by the combination of bioorganic and biophysical approaches.  相似文献   

18.
Farnesyl diphosphate (FPP) synthase catalyzes the consecutive head-to-tail condensations of isopentenyl diphosphate (IPP, C5) with dimethylallyl diphosphate (DMAPP, C5) and geranyl diphosphate (GPP, C10) to give (E,E)-FPP (C15). The enzyme belongs to a genetically distinct family of chain elongation enzymes that install E-double bonds during each addition of a five-carbon isoprene unit. Analysis of the C10 and C15 products from incubations with avian FPP synthase reveals that small amounts of neryl diphosphate (Z-C10) and (Z,E)-FPP are formed along with the E-isomers during the C5 --> C10 and C10 --> C15 reactions. Similar results were obtained for FPP synthase from Escherichia coli, Artemisia tridentata (sage brush), Pyrococcus furiosus, and Methanobacter thermautotrophicus and for GPP and FPP synthesized in vivo by E. coli FPP synthase. When (R)-[2-2H]IPP was a substrate for chain elongation, no deuterium was found in the chain elongation products. In contrast, the deuterium in (S)-[2-2H]IPP was incorporated into all of the products. Thus, the pro-R hydrogen at C2 of IPP is lost when the E- and Z-double bond isomers are formed. The synthesis of Z-double bond isomers by FPP synthase during chain elongation is unexpected for a highly evolved enzyme and probably reflects a compromise between optimizing double bond stereoselectivity and the need to exclude DMAPP from the IPP binding site.  相似文献   

19.
Isopentenyl diphosphate isomerase (IDI) catalyzes the interconversion of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). These two molecules are the building blocks for construction of isoprenoid carbon skeletons in nature. Two structurally unrelated forms of IDI are known. A variety of studies support a proton addition/proton elimination mechanism for both enzymes. During studies with Thermus thermophilus IDI-2, we discovered that the olefinic hydrogens of a vinyl thiomethyl analogue of isopentenyl diphosphate exchanged with solvent when the enzyme was incubated with D(2)O without concomitant isomerization of the double bond. These results suggest that the enzyme-catalyzed isomerization reaction is not concerted.  相似文献   

20.
Chiral α-arylthiocarboxylic acids with different substitution patterns, representing new pirinixic acid derivatives with dual PPARα/γ agonistic activities, have been separated into enantiomers on tert-butylcarbamoylquinine and quinidine based chiral anion-exchangers and amylose tris(3,5-dimethylphenylcarbamate) coated silica on analytical and preparative scale. Absolute configurations of individual enantiomers were assigned chromatographically via elution orders on the chiral anion-exchangers and were confirmed by stereoselective syntheses via Ewans auxiliaries that have lead to enantiomeric products with known absolute configurations. The results of both methods were in full agreement. Moreover, the receptor stereoselectivity in PPARα transactivation activities was consistent within the test set of structurally related compounds. Limited correlation (between elution order and substitution) was observed within the set of α-arylthiocarboxylic acids on the amylose tris(3,5-dimethylphenylcarbamate) based chiral stationary phase (CSP), in particular the elution order changed with remote substitution. This clearly demonstrates the risks of chromatographic absolute configuration assignments by prediction from one structural analog to another one, especially with CSPs such as polysaccharide CSPs that are recognized for their broad applicability due to multiple binding and chiral recognition modes. It is therefore of utmost importance that such chromatographic absolute configuration predictions by extrapolation to structural analogs are combined with orthogonal methods for verification of the results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号