首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The electronic characteristics of mixed‐valence complexes are often inferred from the shape of the inter‐valence charge transfer (IVCT) band, which usually falls in the near infrared (NIR) region, and relationships derived from Marcus‐Hush theory. These analyses typically assume one single, dominant molecular conformation. The NIR spectra of the prototypical delocalised (Class III Robin–Day mixed‐valence) complexes [{Ru(pp)Cp’}2(μ‐C≡C?C≡C)]+ ([ 1 ]+: Cp’=Cp, pp=(PPh3)2; [ 2 ]+: Cp’=Cp, pp=dppe; [ 3 ]+: Cp’=Cp*, pp=dppe) feature a ‘two‐band’ pattern, which complicates band‐shape analysis using these traditional methods. In the past, the appearance of sub‐bands within or near the IVCT transition has been attributed to vibronic effects or localised d‐d transitions. Quantum‐chemical modelling of a series of rotational conformers of [ 1 ]+–[ 3 ]+ reveals the two components that contribute to the NIR absorption band envelope to be a π‐π* transition and an MLCT transition. The MLCT components only gain appreciable intensity when the orientation of the half‐sandwich ruthenium ligand spheres deviates from idealised cis (Ω P?Ru?Ru?P=0°) or trans (Ω P?Ru?Ru?P=180°) conformations. The increased steric demand of the supporting ligands, together with some underlying inter‐phosphine ligand T‐shaped CH???π stacking interactions across the series [ 1 ]+ to [ 2 ]+ to [ 3 ]+ results in local minima biased towards such non‐idealised conformations of the metal‐ligand fragments (Ω P?Ru?Ru?P=33–153°). Experimentally, this is indicated by appearance of multiple bands within the IR (C≡C) band envelopes and increasing intensity of the higher‐energy MLCT transition(s) relative to the π‐π* transition across the series, and the appearance of a pronounced ‘two‐band’ pattern in the experimental NIR absorption envelopes. These conformational effects and the methods of analysis presented here, which combine analysis of IR and NIR spectra with quantum‐chemical calculations on a range of energetically similar conformational minima, are expected to be quite general for mixed‐valence systems.  相似文献   

2.
The conformational energy landscape and the associated electronic structure and spectroscopic properties (UV/Vis/near‐infrared (NIR) and IR) of three formally d5/d6 mixed‐valence diruthenium complex cations, [{Ru(dppe)Cp*}2(μ‐C≡CC6H4C≡C)]+, [ 1 ]+, [trans‐{RuCl(dppe)2}2(μ‐C≡CC6H4C≡C)]+, [ 2 ]+, and the Creutz–Taube ion, [{Ru(NH3)5}2(μ‐pz)]5+, [ 3 ]5+ (Cp=cyclopentadienyl; dppe=1,2‐bis(diphenylphosphino)ethane; pz=pyrazine), have been studied using a nonstandard hybrid density functional BLYP35 with 35 % exact exchange and continuum solvent models. For the closely related monocations [ 1 ]+ and [ 2 ]+, the calculations indicated that the lowest‐energy conformers exhibited delocalized electronic structures (or class III mixed‐valence character). However, these minima alone explained neither the presence of shoulder(s) in the NIR absorption envelope nor the presence of features in the observed vibrational spectra characteristic of both delocalized and valence‐trapped electronic structures. A series of computational models have been used to demonstrate that the mutual conformation of the metal fragments—and even more importantly the orientation of the bridging ligand relative to those metal centers—influences the electronic coupling sufficiently to afford valence‐trapped conformations, which are of sufficiently low energy to be thermally populated. Areas in the conformational phase space with variable degrees of symmetry breaking of structures and spin‐density distributions are shown to be responsible for the characteristic spectroscopic features of these two complexes. The Creutz–Taube ion [ 3 ]5+ also exhibits low‐lying valence‐trapped conformational areas, but the electronic transitions that characterize these conformations with valence‐localized electronic structures have low intensities and do not influence the observed spectroscopic characteristics to any notable extent.  相似文献   

3.
Reactions of [Ru{C=C(H)-1,4-C6H4C≡CH}(PPh3)2Cp]BF4 ([ 1 a ]BF4) with hydrohalic acids, HX, results in the formation of [Ru{C≡C-1,4-C6H4-C(X)=CH2}(PPh3)2Cp] [X=Cl ( 2 a-Cl ), Br ( 2 a-Br )], arising from facile Markovnikov addition of halide anions to the putative quinoidal cumulene cation [Ru(=C=C=C6H4=C=CH2)(PPh3)2Cp]+. Similarly, [M{C=C(H)-1,4-C6H4-C≡CH}(LL)Cp ]BF4 [M(LL)Cp’=Ru(PPh3)2Cp ([ 1 a ]BF4); Ru(dppe)Cp* ([ 1 b ]BF4); Fe(dppe)Cp ([ 1 c ]BF4); Fe(dppe)Cp* ([ 1 d ]BF4)] react with H+/H2O to give the acyl-functionalised phenylacetylide complexes [M{C≡C-1,4-C6H4-C(=O)CH3}(LL)Cp’] ( 3 a – d ) after workup. The Markovnikov addition of the nucleophile to the remote alkyne in the cations [ 1 a–d ]+ is difficult to rationalise from the vinylidene form of the precursor and is much more satisfactorily explained from initial isomerisation to the quinoidal cumulene complexes [M(=C=C=C6H4=C=CH2)(LL)Cp’]+ prior to attack at the more exposed, remote quaternary carbon. Thus, whilst representative acetylide complexes [Ru(C≡C-1,4-C6H4-C≡CH)(PPh3)2Cp] ( 4 a ) and [Ru(C≡C-1,4-C6H4-C≡CH)(dppe)Cp*] ( 4 b ) reacted with the relatively small electrophiles [CN]+ and [C7H7]+ at the β-carbon to give the expected vinylidene complexes, the bulky trityl ([CPh3]+) electrophile reacted with [M(C≡C-1,4-C6H4-C≡CH)(LL)Cp’] [M(LL)Cp’=Ru(PPh3)2Cp ( 4 a ); Ru(dppe)Cp* ( 4 b ); Fe(dppe)Cp ( 4 c ); Fe(dppe)Cp* ( 4 d )] at the more exposed remote end of the carbon-rich ligand to give the putative quinoidal cumulene complexes [M{C=C=C6H4=C=C(H)CPh3}(LL)Cp’]+, which were isolated as the water adducts [M{C≡C-1,4-C6H4-C(=O)CH2CPh3}(LL)Cp’] ( 6 a–d ). Evincing the scope of the formation of such extended cumulenes from ethynyl-substituted arylvinylene precursors, the rather reactive half-sandwich (5-ethynyl-2-thienyl)vinylidene complexes [M{C=C(H)-2,5-cC4H2S-C≡CH}(LL)Cp’]BF4 ([ 7 a – d ]BF4 add water readily to give [M{C≡C-2,5-cC4H2S-C(=O)CH3}(LL)Cp’] ( 8 a – d )].  相似文献   

4.
In this work, the design, synthesis, and single-molecule conductance of ethynyl- and butadiynyl-ruthenium molecular wires with thioether anchor groups [RS=n-C6H13S, p-tert-Bu−C6H4S), trans-{RS−(C≡C)n}2Ru(dppe)2 (n=1 ( 1R ), 2 ( 2R ); dppe: 1,2-bis(diphenylphosphino)ethane) and trans-(n-C6H13S−C≡C)2Ru{P(OMe)3}4 3hex ] are reported. Scanning tunneling microscope break-junction study has revealed conductance of the organometallic molecular wires with the thioacetylene backbones higher than that of the related organometallic wires having arylethynylruthenium linkages with the sulfur anchor groups, trans-{p-MeS−C6H4-(C≡C)n}2Ru(phosphine)4 4 n (n=1, 2) and trans-(Th−C≡C)2Ru(phosphine)4 5 (Th=3-thienyl). It should be noted that the molecular junctions constructed from the butadiynyl wire 2R , trans-{ Au −RS−(C≡C)2}2Ru(dppe)2 ( Au : gold metal electrode), show conductance comparable to that of the covalently linked polyynyl wire with the similar molecular length, trans-{ Au −(C≡C)3}2Ru(dppe)2 63 . The DFT non-equilibrium Green's function (NEGF) study supports the highly conducting nature of the thioacetylene molecular wires through HOMO orbitals.  相似文献   

5.
The synthesis of [Ti6O4(OiPr)8(O2CPh)8] ( 3 ) and [RuCl(N≡CR)5][RuCl4(N≡CR)2] ( 4a , R = Me; 4b , R = Ph), [Ru(N≡CPh)6][RuCl4(N≡CPh)2] ( 5 ) and [H3O][RuCl4(N≡CMe)2] ( 7a ) is discussed. Crystallization of 5 from CH2Cl2 gave trans-[RuCl2(N≡CPh)4] ( 6 ). The solid-state structures of 3 , 4a , b , 5 , 6 and 7a are reported. Complex 4b forms a 3D network, while 6 displays a 2D structure, due to π-interactions between the benzonitrile ligands. The (spectro)electrochemical behavior of 4a , b and 6 was studied at 25 and –72 °C and the results thereof are compared with [NEt4][RuCl4(N≡CMe)2] ( 7b ) and [RuCl(N≡CPh)5][PF6] ( 8 ). The electrochemical response of the cation and the anion in 4a , b are independent from each other. [RuCl(N≡CR)5]+ possesses one reversible RuII/RuIII process. However, [RuCl4(N≡CMe)2] was shown to be prone to ligand exchange and disproportionation upon formation of either a RuIV and RuII species at 25 °C, while at –72 °C the rapid conversion of the electrochemically formed species is hindered. In situ IR and UV/Vis/NIR studies confirmed the respective disproportionation reaction products of the aforementioned oxidation and reduction, respectively.  相似文献   

6.
7.
A series of ruthenium alkenylacetylide complexes trans-[Ru{C≡CC(=CH2)R}Cl(dppe)2] (R=Ph ( 1 a ), cC4H3S ( 1 b ), 4-MeS-C6H4 ( 1 c ), 3,3-dimethyl-2,3-dihydrobenzo[b]thiophene (DMBT) ( 1 d )) or trans-[Ru{C≡C-cC6H9}Cl(dppe)2] ( 1 e ) were allowed to react with the corresponding propargylic alcohol HC≡CC(Me)R(OH) (R=Ph ( A ), cC4H3S ( B ), 4-MeS-C6H4 ( C ), DMBT ( D ) or HC≡C-cC6H10(OH) ( E ) in the presence of TlBF4 and DBU to presumably give alkenylacetylide/allenylidene intermediates trans-[Ru{C≡CC(=CH2)R}{C=C=C(Me)}(dppe)2]PF6 ([ 2 ]PF6). These complexes were not isolated but deprotonated to give the isolable bis(alkenylacetylide) complexes trans-[Ru{C≡CC(=CH2)R}2(dppe)2] (R=Ph ( 3 a ), cC4H3S ( 3 b ), 4-MeS-C6H4 ( 3 c ), DMBT ( 3 d )) and trans-[Ru{C≡C-cC6H9}2(dppe)2] ( 3 e ). Analogous reactions of trans-[Ru(CH3)2(dmpe)2], featuring the more electron-donating 1,2-bis(dimethylphosphino)ethane (dmpe) ancillary ligands, with the propargylic alcohols A or C and NH4PF6 in methanol allowed isolation of the intermediate mixed alkenylacetylide/allenylidene complexes trans-[Ru{C≡CC(=CH2)R}{C=C=C(Me)}(dmpe)2]PF6 (R=Ph ([ 4 a ]PF6), 4-MeS-C6H4 ([ 4 c ]PF6). Deprotonation of [ 4 a ]PF6 or [ 4 c ]PF6 gave the symmetric bis(alkenylacetylide) complexes trans-[Ru{C≡CC(=CH2)R}2(dmpe)2] (R=Ph ( 5 a ), 4-MeS-C6H4 ( 5 c )), the first of their kind containing the dmpe ancillary ligand sphere. Attempts to isolate bis(allenylidene) complexes [Ru{C=C=C(Me)R}2(PP)2]2+ (PP=dppe, dmpe) from treatment of the bis(alkenylacetylide) species 3 or 5 with HBF4 ⋅ Et2O were ultimately unsuccessful.  相似文献   

8.
CuII/RuII and CdII/RuII hybrid complexes [Cu(L1–3)(NC5H4C≡CRu(dppe)2Cl)] (1a-3a) and [Cd(L1-3)(NC5H4C≡CRu(dppe)2Cl)] (1b–3b) have been prepared by reaction of trans-[RuCl(dppe)2(C≡C-py-3)] (1) with copper or cadmium acetate in the presence of Schiff base ligands LH1–3 (where LH = 2-(pyrrole-2-yl-methylidine)aminophenol (LH1), 5-bromo-2-(pyrrole-2-yl-methylidine)aminophenol (LH2) and 5-nitro-2-(pyrrole-2-yl-methylidine)aminophenol (LH3)). The hybrid materials were characterized on the basis of elemental analyses, TEM, IR, UV–visible, 1H NMR, and 31P NMR spectral studies. TEM overview observations revealed well-dispersed spherical nanoparticles of ~60 nm are formed. Quasireversible redox behavior is observed for CuII/RuII complexes corresponding to CuI/CuII and RuII/RuIII couples. All the complexes exhibit blue-green emission as a result of fluorescence from the intraligand (π → π*) emission excited state with good quantum yield. The second-order nonlinear optical (NLO) properties of CuII/RuII and CdII/RuII complexes have been investigated by the Kurtz-powder method. The second harmonic generation efficiency of these complexes show that these complexes are NLO active and display good second-order nonlinear optical activity.  相似文献   

9.
The luminescent tungsten–alkylidyne metalloligand [WCl(≡C‐4,4′‐C6H4CC‐py)(dppe)2] ( 1 ; dppe=1,2‐bis(diphenylphosphino)ethane) and the zinc–tetraarylporphyrins ZnTPP and ZnTPClP (TPP=tetraphenylporphyrin, TPClP=tetra(p‐chlorophenyl)porphyrin) self‐assemble in fluorobenzene solution to form the dyads ZnTPP( 1 ) and ZnTPClP( 1 ), in which the metalloligand is axially coordinated to the porphyrin. Excitation of the porphyrin‐centered S1 excited states of these dyads initiates intramolecular energy‐transfer (ZnPor→ 1 ) and electron‐transfer ( 1 →ZnPor) processes, which together efficiently quench the S1 state (~90 %). Transient‐absorption spectroscopy and an associated kinetic analysis reveal that the net product of the energy‐transfer process is the 3[dπ*] state of coordinated 1 , which is formed by S11[dπ*] singlet–singlet (Förster) energy transfer followed by 1[dπ*]→3[dπ*] intersystem crossing. The data also demonstrate that coordinated 1 reductively quenches the porphyrin S1 state to produce the [ZnPor?][ 1+ ] charge‐separated state. This is a rare example of the reductive quenching of zinc porphyrin chromophores. The presence in the [ZnPor?][ 1+ ] charge‐separated states of powerfully reducing zinc–porphyrin radical anions, which are capable of sensitizing a wide range of reductive electrocatalysts, and the 1+ ion, which can initiate the oxidation of H2, produces an integrated photochemical system with the thermodynamic capability of driving photoredox processes that result in the transfer of renewable reducing equivalents instead of the consumption of conventional sacrificial donors.  相似文献   

10.
The facile synthesis of a stable and isolable compound with a fluoroalkynyl group, M−C≡CF, is reported. Reaction of [Ru(C≡CH)(η5‐C5Me5)(dppe)] with an electrophilic fluorinating agent (NFSI) results in the formation of the fluorovinylidene complex [Ru(=C=CHF)(η5‐C5Me5)(dppe)][N(SO2Ph)2]. Subsequent deprotonation with LiN(SiMe3)2 affords the fluoroalkynyl complex [Ru(C≡CF)(η5‐C5Me5)(dppe)]. In marked contrast to the rare and highly reactive examples of fluoroalkynes that have been reported previously, this compound can be readily isolated and structurally characterized. This has allowed the structure and bonding in the CCF motif to be explored. Further electrophilic fluorination of this species yields the difluorovinylidene complex [Ru(C=CF2)(η5‐C5Me5)(dppe)][N(SO2Ph)2].  相似文献   

11.
The electronic structure and associated spectroscopic properties of ligand-bridged, bimetallic ‘mixed-valence’ complexes of the general form {M}(μ-B){M+} are dictated by the electronic couplings, and hence orbital overlaps, between the metal centers mediated by the bridge. In the case of complexes such as [{Cp*(dppe)Ru}(μ-C≡CC6H4C≡C){Ru(dppe)Cp*}]+, the low barrier to rotation of the half-sandwich metal fragments and the arylene bridge around the acetylene moieties results in population of many energy minima across the conformational energy landscape. Since orbital overlap is also sensitive to the particular mutual orientations of the metal fragment(s) and arylene bridge through a Karplus-like relationship, the different members of the population range exemplify electronic structures ranging from strongly localized (weakly coupled Robin-Day Class II) to completely delocalized (Robin-Day Class III). Here, we use electronic structure calculations with the hybrid density functional BLYP35-D3 and a continuum solvent model in combination with UV-vis-NIR and IR spectroelectrochemical studies to show that the conformational population in complexes [{Cp*(dppe)Ru}(μ-C≡CArC≡C){Ru(dppe)Cp*]+, and hence the dominant electronic structure, can be biased through the steric and electronic properties of the diethynylarylene (Ar) moiety (Ar=1,4-C6H4, 1,4-C6F4, 1,4-C6H2-2,5-Me2, 1,4-C6H2-2,5-(CF3)2, 1,4-C6H2-2,5-iPr2).  相似文献   

12.
Multiple bonds between boron and transition metals are known in many borylene (:BR) complexes via metal dπ→BR back-donation, despite the electron deficiency of boron. An electron-precise metal–boron triple bond was first observed in BiB2O [Bi≡B−B≡O] in which both boron atoms can be viewed as sp-hybridized and the [B−BO] fragment is isoelectronic to a carbyne (CR). To search for the first electron-precise transition-metal-boron triple-bond species, we have produced IrB2O and ReB2O and investigated them by photoelectron spectroscopy and quantum-chemical calculations. The results allow to elucidate the structures and bonding in the two clusters. We find IrB2O has a closed-shell bent structure (Cs, 1A′) with BO coordinated to an Ir≡B unit, (OB)Ir≡B, whereas ReB2O is linear (C∞v, 3Σ) with an electron-precise Re≡B triple bond, [Re≡B−B≡O]. The results suggest the intriguing possibility of synthesizing compounds with electron-precise M≡B triple bonds analogous to classical carbyne systems.  相似文献   

13.
The interpretation of 36 charge neutral ‘contact pairs’ from the IsoStar database was supported by DFT calculations of model molecules 1 – 12 , and bimolecular adducts thereof. The ‘central groups’ are σ-hole donors (H2O and aromatic C−I), π-hole donors (R−C(O)Me, R−NO2 and R−C6F5) and for comparison R−C6H5 (R=any group or atom). The ‘contact groups’ are hydrogen bond donors X−H (X=N, O, S, or R2C, or R3C) and lone-pair containing fragments (R3C−F, R−C≡N and R2C=O). Nearly all the IsoStar distributions follow expectations based on the electrostatic potential of the ‘central-’ and ‘contact group’. Interaction energies (ΔEBSSE) are dominated by electrostatics (particularly between two polarized molecules) or dispersion (especially in case of large contact area). Orbital interactions never dominate, but could be significant (∼30 %) and of the n/π→σ*/π* kind. The largest degree of directionality in the IsoStar plots was typically observed for adducts more stable than ΔEBSSE≈−4 kcal⋅mol−1, which can be seen as a benchmark-value for the utility of an interaction in crystal engineering. This benchmark could be met with all the σ- and π-hole donors studied.  相似文献   

14.
By using organometallic reactions like Pd-catalyzed C-C coupling, metal-carbon bond formation and silicon-carbon bond cleavage, novel carbon-rich organometallic monomers HC≡C-C6H4-C≡C-[M]-C≡C-C6H4-C≡CH ( [M] = -Ru(dppe)2- and (η5-C5H4)2Fe) and organic monomers H-(C≡C-C6H4)X-C≡CH (x = 1 to 3) have been obtained. They have been used for the design of novel homo and hetero metal-containing polymers via organometallic polycondensation reactions based on quantitative metal-carbon bond formation.  相似文献   

15.
Reduction of d2 metal–oxo ions of the form [MO(PP)2Cl]+ (M=Mo, W; PP=chelating diphosphine) produces d3 MO(PP)2Cl complexes, which include the first isolated examples in group 6. The stability and reactivity of the MO(PP)2Cl compounds are found to depend upon the steric bulk of the phosphine ligands: derivatives with bulky phosphines that shield the oxo ligand are stable enough to be isolated, whereas those with phosphines that leave the oxo ligand exposed are more reactive and observed transiently. Magnetic measurements and DFT calculations on MoO(dppe)2Cl indicate the d3 compounds are low spin with a 2[(dxy)2(π*(MoO))1] configuration. X-ray crystallographic and vibrational-spectroscopic studies on d2 and d3 [MoO(dppe)2Cl]0/+ establish that the d3 compound possesses a reduced M−O bond order and significantly longer Mo−O bond, accounting for its greater reactivity. These results indicate that the oxo-centered reactivity of d3 complexes may be controlled through ligand variation.  相似文献   

16.
By means of cyclic voltammetry (CV) and DFT calculations, it was found that the electron-acceptor ability of 2,1,3-benzochalcogenadiazoles 1 – 3 (chalcogen: S, Se, and Te, respectively) increases with increasing atomic number of the chalcogen. This trend is nontrivial, since it contradicts the electronegativity and atomic electron affinity of the chalcogens. In contrast to radical anions (RAs) [ 1 ].− and [ 2 ].−, RA [ 3 ].− was not detected by EPR spectroscopy under CV conditions. Chemical reduction of 1 – 3 was performed and new thermally stable RA salts [K(THF)]+[ 2 ].− ( 8 ) and [K(18-crown-6)]+[ 2 ].− ( 9 ) were isolated in addition to known salt [K(THF)]+[ 1 ].− ( 7 ). On contact with air, RAs [ 1 ].− and [ 2 ].− underwent fast decomposition in solution with the formation of anions [ECN], which were isolated in the form of salts [K(18-crown-6)]+[ECN] ( 10 , E=S; 11 , E=Se). In the case of 3 , RA [ 3 ].− was detected by EPR spectroscopy as the first representative of tellurium–nitrogen π-heterocyclic RAs but not isolated. Instead, salt [K(18-crown-6)]+2[ 3 -Te2]2− ( 12 ) featuring a new anionic complex with coordinate Te−Te bond was obtained. On contact with air, salt 12 transformed into salt [K(18-crown-6)]+2[ 3 -Te4- 3 ]2− ( 13 ) containing an anionic complex with two coordinate Te−Te bonds. The structures of 8 – 13 were confirmed by XRD, and the nature of the Te−Te coordinate bond in [ 3 -Te2]2− and [ 3 -Te4- 3 ]2− was studied by DFT calculations and QTAIM analysis.  相似文献   

17.
8-Benzoyl-9-deuterio-naphtho [de-2.3.4]bicyclo [3.2.2]nona-2,6,8-triene ( 1 ) rearranged quantitatively in a photochemical di-π-methane-type process to 2-, 6-, and 9-deuteriated 1-benzoyl-naphtho [de-2.3.4]tricyclo [4.3.0.02,9]nona-2, 6-diene ( 8a–c ). The phenylhydroxymethyl analogue 2 underwent a similar regioselective rearrangement to 9a–c . The rearrangement 1 → 8a–c is proposed to proceed along three reaction paths evolving from two primary photochemical processes of naphthylvinyl and vinyl-vinyl bonding ( 1 → 3 + 6 ). Evidence for a competition between several paths and involvement of biradical intermediates derives from changes in the isotopomeric composition with temperature, and from laser flash detection (λexc 353 nm) of a transient. The dependence of the quantum yield for product formation from 1 on excitation wavelength and sensitizer triplet energy leads to the conclusion that reaction to the primary biradicals occurs directly from the S1 (n, π*) and T2 (n, π* ) states, and that reaction from T1 (π, π*) and from S2 (π, π*) proceed either directly or via T2.  相似文献   

18.
Gas-phase complexes of [n]helicenes with n=6, 7 and 8 and the silver(I) cation are generated utilizing electrospray ionization mass spectrometry (ESI-MS). Besides the well-established [1 : 1] helicene/Ag+-complex in which the helicene provides a tweezer-like surrounding for the Ag+, there is also a [2 : 1] complex formed. Density functional theory (DFT) calculations in conjunction with energy-resolved collision-induced dissociation (ER-CID) experiments reveal that the second helicene attaches via π-π stacking to the first helicene, which is part of the pre-formed [1 : 1] tweezer complex with Ag+. For polycyclic aromatic hydrocarbons (PAHs) of planar structure, the [2 : 1] complex with silver(I) is typically structured as an Ag+-bound dimer in which the Ag+ would bind to both PAHs as the central metal ion (PAH–Ag+–PAH). For helicenes, the Ag+-bound dimer is of similar thermochemical stability as the π-π stacked dimer, however, it is kinetically inaccessible. Coronene (Cor) is investigated in comparison to the helicenes as an essentially planar PAH. In analogy to the π-π stacked dimer of the helicenes, the Cor−Ag+−Cor−Cor complex is also observed. Competition experiments using [n]helicene mixtures reveal that the tweezer complexes of Ag+ are preferably formed with the larger helicenes, with n=6 being entirely ignored as the host for Ag+ in the presence of n=7 or 8.  相似文献   

19.
Crystals of the π-complex (2-AmpH)[CuCl2(HOCH2C≡CCH2OH)] (2-AmpH+ is the 2-aminopyridinium cation) were obtained by the reaction of 2-butyne-1,4-diol with CuCl in aqueous 2-aminopyridinium chloride solution and studied by X-ray diffraction: space group P \(\overline 1 \), a= 7.172(4), b= 7.796(3), c = 11.60(9) Å, α = 99.75(6)°, β = 96.53(7)°, γ = 101.03(3)°, Z = 2. The crystals consist of individual anions [CuCl2(HOCH2C≡CCH2OH)]? and cations [2-AmpH]+. The π-coordinated Cu(I) atoms of the complex anion have trigonal-planar surrounding of two chlorine atoms and C≡C bond of the 2-butyne-1,4-diol molecule. The alcohol groups form stable hydrogen bonds N-H?O (1.89 Å) and O-H?Cl (2.20 Å).  相似文献   

20.
Electron-rich π-conjugated dianions are known to be ambient unstable and their stabilization in ambient water is yet to be realized. We report the first example of an exceptionally stable naphthalenediimide-based dianion in ambient and hot water, forming one of the most stable redox-active dianion. The half-life (t1/2) of dianion ( 1 a2− ) is more than four months in ambient water. The dianionic state was confirmed by X-ray crystallography and by various spectroscopic methods. The noncovalent electronic conduits introduced for the first time in dianions, embrace nOπ*C≡N interactions and aid in delocalizing the dianionic charge as validated from theoretical studies. The dianions harness strong NIR absorption and electron donor ability to organic acceptors and metal ions, which make them suitable for potential green energy applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号