首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Disulfide-containing detergents (DCDs) are introduced, which contain a disulfide bond in the hydrophobic tail. DCDs form smaller micelles than corresponding detergents with linear hydrocarbon chains, while providing good solubilization and reconstitution of membrane proteins. The use of this new class of detergents in structural biology is illustrated with solution NMR spectra of the human G protein-coupled receptor A2AAR, which is an α-helical protein, and the β-barrel protein OmpX from E. coli.  相似文献   

2.
To tackle the problems associated with membrane protein (MP) instability in detergent solutions, we designed a series of glycosyl‐substituted dicarboxylate detergents (DCODs) in which we optimized the polar head to clamp the membrane domain by including, on one side, two carboxyl groups that form salt bridges with basic residues abundant at the membrane–cytoplasm interface of MPs and, on the other side, a sugar to form hydrogen bonds. Upon extraction, the DCODs 8 b , 8 c , and 9 b preserved the ATPase function of BmrA, an ATP‐binding cassette pump, much more efficiently than reference or recently designed detergents. The DCODs 8 a , 8 b , 8 f , 9 a , and 9 b induced thermal shifts of 20 to 29 °C for BmrA and of 13 to 21 °C for the native version of the G‐protein‐coupled adenosine receptor A2AR. Compounds 8 f and 8 g improved the diffraction resolution of BmrA crystals from 6 to 4 Å. DCODs are therefore considered to be promising and powerful tools for the structural biology of MPs.  相似文献   

3.
Membrane proteins are of biological and pharmaceutical significance. However, their structural study is extremely challenging mainly due to the fact that only a small number of chemical tools are suitable for stabilizing membrane proteins in solution. Detergents are widely used in membrane protein study, but conventional detergents are generally poor at stabilizing challenging membrane proteins such as G protein-coupled receptors and protein complexes. In the current study, we prepared tandem triazine-based maltosides (TZMs) with two amphiphilic triazine units connected by different diamine linkers, hydrazine (TZM−Hs) and 1,2-ethylenediamine (TZM−Es). These TZMs were consistently superior to a gold standard detergent (DDM) in terms of stabilizing a few membrane proteins. In addition, the TZM−Es containing a long linker showed more general protein stabilization efficacy with multiple membrane proteins than the TZM−Hs containing a short linker. This result indicates that introduction of the flexible1,2-ethylenediamine linker between two rigid triazine rings enables the TZM−Es to fold into favourable conformations in order to promote membrane protein stability. The novel concept of detergent foldability introduced in the current study has potential in rational detergent design and membrane protein applications.  相似文献   

4.
Detergents are often used to investigate the structure and dynamics of membrane proteins. Whereas the structural integrity seems to be preserved in detergents for many membrane proteins, their functional activity is frequently compromised, but can be restored in a lipid environment. Herein we show with per‐residue resolution that while OmpX forms a stable β‐barrel in DPC detergent micelles, DHPC/DMPC bicelles, and DMPC nanodiscs, the pico‐ to nanosecond and micro‐ to millisecond motions differ substantially between the detergent and lipid environment. In particular for the β‐strands, there is pronounced dynamic variability in the lipid environment, which appears to be suppressed in micelles. This unexpected complex and membrane‐mimetic‐dependent dynamic behavior indicates that the frequent loss of membrane protein activity in detergents might be related to reduced internal dynamics and that membrane protein activity correlates with lipid flexibility.  相似文献   

5.
Detergents serve as useful tools for membrane protein structural and functional studies. Their amphipathic nature allows detergents to associate with the hydrophobic regions of membrane proteins whilst maintaining the proteins in aqueous solution. However, widely used conventional detergents are limited in their ability to maintain the structural integrity of membrane proteins and thus there are major efforts underway to develop novel agents with improved properties. We prepared mesitylene‐cored glucoside amphiphiles (MGAs) with three alkyl chains and compared these agents with previously developed xylene‐linked maltoside agents (XMAs) with two alkyl chains and a conventional detergent (DDM). When these agents were evaluated for four membrane proteins including a G protein‐coupled receptor (GPCR), some agents such as MGA‐C13 and MGA‐C14 resulted in markedly enhanced stability of membrane proteins compared to both DDM and the XMAs. This favourable behaviour is due likely to the increased hydrophobic density provided by the extra alkyl chain. Thus, this study not only describes new glucoside agents with potential for membrane protein research, but also introduces a new detergent design principle for future development.  相似文献   

6.
Membrane proteins are key functional players in biological systems. These biomacromolecules contain both hydrophilic and hydrophobic regions and thus amphipathic molecules are necessary to extract membrane proteins from their native lipid environments and stabilise them in aqueous solutions. Conventional detergents are commonly used for membrane protein manipulation, but membrane proteins surrounded by these agents often undergo denaturation and aggregation. In this study, a novel class of maltoside‐bearing amphiphiles, with a xylene linker in the central region, designated xylene‐linked maltoside amphiphiles (XMAs) was developed. When these novel agents were evaluated with a number of membrane proteins, it was found that XMA‐4 and XMA‐5 have particularly favourable efficacy with respect to membrane protein stabilisation, indicating that these agents hold significant potential for membrane protein structural study.  相似文献   

7.
Detergents are the most frequently applied reagents in membrane protein (MP) studies. The limited diversity of one-head-one-tailed traditional detergents, however, is far from sufficient for structurally distinct MPs. Expansion of detergent repertoire has a continuous momentum. In line with the speculation that detergent pre-assembly exerts superiority, herein we report for the first time cross-conjugation of two series of monomeric detergents for constructing a two-dimensional library of dimeric detergents. Optimum detergents stood out with unique preferences in the systematic evaluation of individual MPs. Furthermore, unprecedented hybrid detergents 14M8G and 14M9G enabled high-quality EM study of transporter MsbA and NMR study of G protein-coupled receptor A2AAR, respectively. Given the abundance of cross-coupling chemistries, comprehensive diversity could be readily covered that would facilitate the finding of new detergents for the manipulation of thorny MPs and innovation of the functional and structural study in future.  相似文献   

8.
Integral membrane proteins are amphipathic molecules crucial for all cellular life. The structural study of these macromolecules starts with protein extraction from the native membranes, followed by purification and crystallisation. Detergents are essential tools for these processes, but detergent‐solubilised membrane proteins often denature and aggregate, resulting in loss of both structure and function. In this study, a novel class of agents, designated mannitol‐based amphiphiles (MNAs), were prepared and characterised for their ability to solubilise and stabilise membrane proteins. Some of MNAs conferred enhanced stability to four membrane proteins including a G protein‐coupled receptor (GPCR), the β2 adrenergic receptor (β2AR), compared to both n‐dodecyl‐d ‐maltoside (DDM) and the other MNAs. These agents were also better than DDM for electron microscopy analysis of the β2AR. The ease of preparation together with the enhanced membrane protein stabilisation efficacy demonstrates the value of these agents for future membrane protein research.  相似文献   

9.
10.
β‐barrel membrane proteins are key components of the outer membrane of bacteria, mitochondria and chloroplasts. Their three‐dimensional structure is defined by a network of backbone hydrogen bonds between adjacent β‐strands. Here, we employ hydrogen–deuterium (H/D) exchange in combination with NMR spectroscopy and mass spectrometry to monitor backbone hydrogen bond formation during folding of the outer membrane protein X (OmpX) from E. coli in detergent micelles. Residue‐specific kinetics of interstrand hydrogen‐bond formation were found to be uniform in the entire β‐barrel and synchronized to formation of the tertiary structure. OmpX folding thus propagates via a long‐lived conformational ensemble state in which all backbone amide protons exchange with the solvent and engage in hydrogen bonds only transiently. Stable formation of the entire OmpX hydrogen bond network occurs downhill of the rate‐limiting transition state and thus appears cooperative on the overall folding time scale.  相似文献   

11.
Dendrons are an important class of macromolecules that can be used for a broad range of applications. Recent studies have indicated that mixtures of oligoglycerol detergent (OGD) regioisomers are superior to individual regioisomers for protein extraction. The origin of this phenomenon remains puzzling. Here we discuss the synthesis and characterization of dendritic oligoglycerol regioisomer mixtures and their implementation into detergents. We provide experimental benchmarks to support quality control after synthesis and investigate the unusual utility of OGD regioisomer mixtures for extracting large protein quantities from biological membranes. We anticipate that our findings will enable the development of mixed detergent platforms in the future.  相似文献   

12.
We prepared an amphiphile with a penta‐phenylene lipophilic group and a branched trimaltoside head group. This new agent, designated penta‐phenylene maltoside (PPM), showed a marked tendency to self‐assembly into micelles via strong aromatic–aromatic interactions in aqueous media, as evidenced by 1H NMR spectroscopy and fluorescence studies. When utilized for membrane protein studies, this new agent was superior to DDM, a gold standard conventional detergent, in stabilizing multiple proteins long term. The ability of this agent to form aromatic–aromatic interactions is likely responsible for enhanced protein stabilization when associated with a target membrane protein.  相似文献   

13.
The structure, dynamics, and function of membrane proteins are intimately linked to the properties of the membrane environment in which the proteins are embedded. For structural and biophysical characterization, membrane proteins generally need to be extracted from the membrane and reconstituted in a suitable membrane‐mimicking environment. Ensuring functional and structural integrity in these environments is often a major concern. The styrene/maleic acid co‐polymer has recently been shown to be able to extract lipid/membrane protein patches directly from native membranes to form nanosize discoidal proteolipid particles, also referred to as native nanodiscs. In this work, we show that high‐resolution solid‐state NMR spectra can be obtained from an integral membrane protein in native nanodiscs, as exemplified by the 2×34 kDa bacterial cation diffusion facilitator CzcD.  相似文献   

14.
Large proteins remain inaccessible to structural NMR studies because of their unfavorable relaxation properties. Their solubilization in the aqueous core of reverse micelles, in a low-viscosity medium, represents a promising approach, provided that their native tertiary structure is maintained. However, the use of classical ionic surfactants may lead to protein unfolding, due to strong electrostatic interactions between the polar head groups and the protein charges. To design reverse micelles in which these interactions are weakened, a new zwitterionic surfactant molecule was synthesized and studied by high-resolution NMR spectroscopy, for which cytochrome C and 15N-labeled ubiquitin were used as guest candidates. At different ionization states, both proteins are encapsulated in the absence of salts or other additives, in a folded conformation similar to the native one.  相似文献   

15.
Distance fingerprinting : Pulsed electron–electron double resonance spectroscopy (PELDOR) is applied to the octameric membrane protein complex Wza of E. coli. The data yielded a detailed distance fingerprint of its periplasmic region that compares favorably to the crystal structure. These results provide the foundation to study conformation changes from interaction with partner proteins.

  相似文献   


16.
17.
15N spin‐relaxation rates are demonstrated to provide critical information about the long‐range structure and internal motions of membrane proteins. Combined with an improved calculation method, the relaxation‐rate‐derived structure of the 283‐residue human voltage‐dependent anion channel revealed an anisotropically shaped barrel with a rigidly attached N‐terminal helix. Our study thus establishes an NMR spectroscopic approach to determine the structure and dynamics of mammalian membrane proteins at high accuracy and resolution.  相似文献   

18.
Paramagnetic metal ions deliver structural information both in EPR and solid‐state NMR experiments, offering a profitable synergetic approach to study bio‐macromolecules. We demonstrate the spectral consequences of Mg2+/ Mn2+ substitution and the resulting information contents for two different ATP:Mg2+‐fueled protein engines, a DnaB helicase from Helicobacter pylori active in the bacterial replisome, and the ABC transporter BmrA, a bacterial efflux pump. We show that, while EPR spectra report on metal binding and provide information on the geometry of the metal centers in the proteins, paramagnetic relaxation enhancements identified in the NMR spectra can be used to localize residues at the binding site. Protein engines are ubiquitous and the methods described herein should be applicable in a broad context.  相似文献   

19.
The internal motions of integral membrane proteins have largely eluded comprehensive experimental characterization. Here the fast side‐chain dynamics of the α‐helical sensory rhodopsin II and the β‐barrel outer membrane protein W have been investigated in lipid bilayers and detergent micelles by solution NMR relaxation techniques. Despite their differing topologies, both proteins have a similar distribution of methyl‐bearing side‐chain motion that is largely independent of membrane mimetic. The methyl‐bearing side chains of both proteins are, on average, more dynamic in the ps–ns timescale than any soluble protein characterized to date. Accordingly, both proteins retain an extraordinary residual conformational entropy in the folded state, which provides a counterbalance to the absence of the hydrophobic effect. Furthermore, the high conformational entropy could greatly influence the thermodynamics underlying membrane‐protein functions, including ligand binding, allostery, and signaling.  相似文献   

20.
Integral membrane proteins play central roles in controlling the flow of information and molecules across membranes. Our understanding of membrane protein structures and functions, however, is seriously limited, mainly due to difficulties in handling and analysing these proteins in aqueous solution. The use of a detergent or other amphipathic agents is required to overcome the intrinsic incompatibility between the large lipophilic surfaces displayed by the membrane proteins in their native forms and the polar solvent molecules. Here, we introduce new tripod amphiphiles displaying favourable behaviours toward several membrane protein systems, leading to an enhanced protein solubilisation and stabilisation compared to both conventional detergents and previously described tripod amphiphiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号