首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein post‐translational modifications and protein interactions are the central research areas in mass‐spectrometry‐based proteomics. Protein post‐translational modifications affect protein structures, stabilities, activities, and all cellular processes are achieved by interactions among proteins and protein complexes. With the continuing advancements of mass spectrometry instrumentations of better sensitivity, speed, and performance, selective enrichment of modifications/interactions of interest from complex cellular matrices during the sample preparation has become the overwhelming bottleneck in the proteomics workflow. Therefore, many strategies have been developed to address this issue by targeting specific modifications/interactions based on their physical properties or chemical reactivities, but only a few have been successfully applied for systematic proteome‐wide study. In this review, we summarized the highlights of recent developments in the affinity enrichment methods focusing mainly on low stoichiometric protein lipidations. Besides, to identify potential glyoxal modified arginines, a small part was added for profiling reactive arginine sites using an enrichment reagent. A detailed section was provided for the enrichment of protein interactions by affinity purification and chemical cross‐linking, to shed light on the potentials of different enrichment strategies, along with the unique challenges in investigating individual protein post‐translational modification or protein interaction network.  相似文献   

2.
Tuna backbone peptide (TBP) has been reported to exert potent inhibitory activity against lipid peroxidation in vitro. Since this bears relevant physiological implications, this study was undertaken to assess the impact of peptide modifications on its bioactivity and other therapeutic potential using in vitro and in silico approach. Some TBP analogs, despite lower purity than the parent peptide, exerted promising antioxidant activities in vitro demonstrated by ABTS radical scavenging assay and cellular antioxidant activity assay. In silico digestion of the peptides resulted in the generation of antioxidant, angiotensin-converting enzyme (ACE), and dipeptidyl peptidase-IV (DPPIV) inhibitory dipeptides. Using bioinformatics platforms, we found five stable TBP analogs that hold therapeutic potential with their predicted multifunctionality, stability, non-toxicity, and low bitterness intensity. This work shows how screening and prospecting for bioactive peptides can be improved with the use of in vitro and in silico approaches.  相似文献   

3.
Oligonucleotide chemistry has been developed greatly over the past three decades, with many advances in increasing nuclease resistance, enhancing duplex stability and assisting with cellular uptake. Locked nucleic acid (LNA) is a structurally rigid modification that increases the binding affinity of a modified-oligonucleotide. In contrast, unlocked nucleic acid (UNA) is a highly flexible modification, which can be used to modulate duplex characteristics. In this tutorial review, we will compare the synthetic routes to both of these modifications, contrast the structural features, examine the hybridization properties of LNA and UNA modified duplexes, and discuss how they have been applied within biotechnology and drug research. LNA has found widespread use in antisense oligonucleotide technology, where it can stabilize interactions with target RNA and protect from cellular nucleases. The newly emerging field of siRNAs has made use of LNA and, recently, also UNA. These modifications are able to increase double-stranded RNA stability in serum and decrease off-target effects seen with conventional siRNAs. LNA and UNA are also emerging as versatile modifications for aptamers. Their application to known aptamer structures has opened up the possibility of future selection of LNA-modified aptamers. Each of these oligonucleotide technologies has the potential to become a new type of therapy to treat a wide variety of diseases, and LNA and UNA will no doubt play a part in future developments of therapeutic and diagnostic oligonucleotides.  相似文献   

4.
Hybridization of complementary oligonucleotides is essential to highly valuable research tools in many fields including genetics, molecular biology, and cell biology. For example, an antisense molecule for a particular segment of sense messenger RNA allows gene expression to be selectively turned off, and the polymerase chain reaction requires complementary primers in order to proceed. It is hoped that the antisense approach may lead to therapeutics for treatment of various diseases including cancer. Areas of active research in the antisense field focus on the mechanisms of cellular uptake of antisense molecules and their delivery to specific cell sites, an improved understanding of how these molecules inhibit the production of proteins, as well as the optimization of the chemical stability of antisense molecules and the thermodynamic stability of the duplexes they form with the mRNA targets. The last two issues in particular have prompted chemists to launch an extensive search for oligonucleotide analogs with improved binding properties for hybridization with RNA and higher resistance toward nuclease degradation. During the last years this research has resulted in a flurry of new chemical analogs of DNA and RNA with modifications in the sugar–phosphate backbone as well as in the nucleobase sites. However, to date little effort has been directed toward uncovering the exact origins of the gain or loss in stability when nucleic acid analogs bind to RNA. Although large amounts of thermodynamic data have been collected, the structural perturbations induced by the modifications in hybrid duplexes are only poorly understood. For many modified oligonucleotides the compatibility of protection, coupling, and deprotection chemistry with standard DNA and RNA synthesis protocols makes it now possible to generate modified nucleic acid fragments or mixed oligonucleotides containing modifications at selected sites in quantities suitable for three-dimensional structure investigations. Such studies should reveal the structural origins of the observed changes in affinity and specificity of binding for particular modifications and may guide the development of second-and third-generation antisense molecules. In addition, the availability of a previously unimaginable variety of modified building blocks and the investigation of their structures provides the basis for a deeper understanding of the native DNA and RNA structures. This contribution will summarize the results of X-ray crystallographic structure determinations of modified nucleic acid fragments conducted in our laboratory during the last three years and the insights gained from them.  相似文献   

5.
The thrombin binding aptamer (TBA) is a promising nucleic acid-based anticoagulant. We studied the effects of chemical modifications, such as dendrimer Trebler and NHS carboxy group, on TBA with respect to its structures and thrombin binding affinity. The two dendrimer modifications were incorporated into the TBA at the 5′ end and the NHS carboxy group was added into the thymine residues in the thrombin binding site of the TBA G-quadruplex (at T4, T13 and both T4/T13) using solid phase oligonucleotide synthesis. Circular dichroism (CD) spectroscopy confirmed that all of these modified TBA variants fold into a stable G-quadruplex. The binding affinity of TBA variants with thrombin was measured by surface plasmon resonance (SPR). The binding patterns and equilibrium dissociation constants (KD) of the modified TBAs are very similar to that of the native TBA. Molecular dynamics simulations studies indicate that the additional interactions or stability enhancement introduced by the modifications are minimized either by the disruption of TBA–thrombin interactions or destabilization elsewhere in the aptamer, providing a rational explanation for our experimental data. Overall, this study identifies potential positions on the TBA that can be modified without adversely affecting its structure and thrombin binding preference, which could be useful in the design and development of more functional TBA analogues.  相似文献   

6.
More than 300 different protein post‐translational modifications are currently known, but only a few have been extensively investigated because modified proteoforms are commonly present in sub‐stoichiometry amount. For this reason, improvement of specific enrichment techniques is particularly useful for the proteomic characterization of post‐translationally modified proteins. Enrichment proteomic strategies could help the researcher in the challenging issue to decipher the complex molecular cross‐talk existing between the different factors influencing the cellular pathways. In this review the state of art of the platforms applied for the enrichment of specific and most common post‐translational modifications, such as glycosylation and glycation, phosphorylation, sulfation, redox modifications (i.e. sulfydration and nitrosylation), methylation, acetylation, and ubiquitinylation, are described. Enrichments strategies applied to characterize less studied post‐translational modifications are also briefly discussed.  相似文献   

7.
The interaction between small molecules and proteins is one of the major concerns for structure-based drug design because the principles of protein-ligand interactions and molecular recognition are not thoroughly understood. Fortunately, the analysis of protein-ligand complexes in the Protein Data Bank (PDB) enables unprecedented possibilities for new insights. Herein, we applied molecule-fragmentation algorithms to split the ligands extracted from PDB crystal structures into small fragments. Subsequently, we have developed a ligand fragment and residue preference mapping (LigFrag-RPM) algorithm to map the profiles of the interactions between these fragments and the 20 proteinogenic amino acid residues. A total of 4032 fragments were generated from 71?798 PDB ligands by a ring cleavage (RC) algorithm. Among these ligand fragments, 315 unique fragments were characterized with the corresponding fragment-residue interaction profiles by counting residues close to these fragments. The interaction profiles revealed that these fragments have specific preferences for certain types of residues. The applications of these interaction profiles were also explored and evaluated in case studies, showing great potential for the study of protein-ligand interactions and drug design. Our studies demonstrated that the fragment-residue interaction profiles generated from the PDB ligand fragments can be used to detect whether these fragments are in their favorable or unfavorable environments. The algorithm for a ligand fragment and residue preference mapping (LigFrag-RPM) developed here also has the potential to guide lead chemistry modifications as well as binding residues predictions.  相似文献   

8.
Tudor domains bind to dimethylarginine (DMA) residues, which are post‐translational modifications that play a central role in gene regulation in eukaryotic cells. NMR spectroscopy and quantum calculations are combined to demonstrate that DMA recognition by Tudor domains involves conformational selection. The binding mechanism is confirmed by a mutation in the aromatic cage that perturbs the native recognition mode of the ligand. General mechanistic principles are delineated from the combined results, indicating that Tudor domains utilize cation–π interactions to achieve ligand recognition.  相似文献   

9.
The formation of nitric oxide (NO) in biological systems has led to the discovery of a number of post- translational protein modifications that can affect biological conditions such as vasodilation. Studies both from our laboratory and others have shown that beside its effect on cGMP generation from soluble guanylate cylcase, NO can produce protein modifications through both S-nitrosylation of cysteine residues. Previously, we have identified the potential S-nitrosylation sites on endothelial NO synthase (eNOS). Thus, the goal of this study was to further increase our understanding of reactive nitrogen protein modifications of eNOS by identifing tyrosine residues within eNOS that are susceptible to nitration in vitro. To accomplish this, nitration was carried out using tetranitromethane followed by tryptic digest of the protein. The resulting tryptic peptides were analyzed by liquid chromatography/mass spectrometry (LC/MS) and the position of nitrated tyrosines in eNOS were identified. The eNOS sequence contains 30 tyrosine residues and our data indicate that multiple tyrosine residues are capable of being nitrated. We could identify 25 of the 30 residues in our tryptic digests and 19 of these were susceptible to nitration. Interstingly, our data identified four tyrosine residues that can be modified by nitration that are located in the region of eNOS responsible for the binding to heat shock protein 90 (Hsp90), which is responsible for ensuring efficient coupling of eNOS.  相似文献   

10.
11.
Chemical composition of tumor suppressor protein p53 is altered via multiple post-translational modifications which modulate its cellular lifetime and interactions with other biomolecules. Here we report total chemical synthesis of a 61-residue form of transactivation domain (TAD) of p53 based on native chemical ligation of three peptide segments. The experiments to characterize its binding to nuclear co-activator binding domain (NCBD) of CREB-binding protein confirmed native-like induced folding upon binding to NCBD. Thus, the synthetic approach described herein can be useful for the preparation of various post-translationally modified analogues of TAD-p53 for further functional biochemical and biophysical studies.  相似文献   

12.
Nitroalkanes react specifically with aldehydes, providing rapid, stable, and chemoselective protein bioconjugation. These nitroalkylated proteins mimic key post‐translational modifications (PTMs) of proteins and can be used to understand the role of these PTMs in cellular processes. Demonstrated here is the substrate scope of this bioconjugation by attaching a variety of tags, such as NMR tags, fluorescent tags, affinity tags, and alkyne tags, to proteins. The structure and enzymatic activity of modified proteins remain conserved after labeling. Notably, the nitroalkane group leads to easy characterization of proteins by mass spectrometry because of its distinct fingerprint pattern. Importantly, the nitro‐alkylated peptides provide a new handle for site‐selective fluorination of peptides, thus installing a specific probe to study peptide–protein interactions by 19F NMR spectroscopy. Furthermore, nitroalkane reagents can be used for the late‐stage diversification of peptides and for the synthesis of peptide staples.  相似文献   

13.
《Chemistry & biology》1998,5(10):529-538
Background: Many intracellular signal-transduction pathways are regulated by specific protein-protein interactions. These interactions are mediated by structural domains within signaling proteins that modulate a protein's cellular location, stability or activity. For example, Src-homology 2 (SH2) domains mediate protein-protein interactions through short contiguous amino acid motifs containing phosphotyrosine. As SH2 domains have been recognized as key regulatory molecules in a variety of cellular processes, they have become attractive drug targets.Results: We have developed a novel mechanism-based cellular assay to monitor specific SH2-domain-dependent protein-protein interactions. The assay is based on a two-hybrid system adapted to function in mammalian cells where the SH2 domain ligand is phosphorylated, and binding to a specific SH2 domain can be induced and easily monitored. As examples, we have generated a series of mammalian cell lines that can be used to monitor SH2-domain-dependent activity of the signaling proteins ZAP-70 and Src. We are utilizing these cell lines to screen for immunosuppressive and anti-osteoclastic compounds, respectively, and demonstrate here the utility of this system for the identification of small-molecule, cell-permeant SH2 domain inhibitors.Conclusions: A mechanism-based mammalian cell assay has been developed to identify inhibitors of SH2-domain-dependent protein-protein interactions. Mechanism-based assays similar to that described here might have general use as screens for cell-permeant, nontoxic inhibitors of protein-protein interactions.  相似文献   

14.
Five isomorphic fluorescent uridine mimics have been subjected to two‐photon (2P) excitation analysis to investigate their potential applicability as non‐perturbing probes for the single‐molecule detection of nucleic acids. We find that small structural differences can cause major changes in the 2P excitation probability, with the 2P cross sections varying by over one order of magnitude. Two of the probes, both thiophene‐modified uridine analogs, have the highest 2P cross sections (3.8 GM and 7.6 GM) reported for nucleobase analogs, using a conventional Ti:sapphire laser for excitation at 690 nm; they also have the lowest emission quantum yields. In contrast, the analogs with the highest reported quantum yields have the lowest 2P cross sections. The structure‐photophysical property relationship presented here is a first step towards the rational design of emissive nucleobase analogs with controlled 2P characteristics. The results demonstrate the potential for major improvements through judicious structural modifications.  相似文献   

15.
The immunoglobulin (Ig) domain is a highly conserved domain predominantly observed in cell surface proteins due to its ability to resist proteolysis. By mutation and selection the Ig domain has evolved to serve diverse biological functions including growth and development, signaling, adhesion and protein-carbohydrate interactions. Collectively, proteins with Ig-like domain constitute the immunoglobulin superfamily (IgSF). The IgSF proteins make up over 2% of human genes constituting the largest gene family in the human genome. Analogous to the complementarity determining regions (CDR)s that form the antigen combining sites of the antibody, the high specificity of the IgSF receptor-ligand interaction is attributed to the sequence and structure of the CDR-like regions unique to each IgSF protein. Hence, CDR-like regions provide ideal templates for the design of mimetics that can potentially perturb specific IgSF receptor/ligand interactions. The determinants of binding are localized near the CDR-like regions, conformation is determined locally and is unique for each loop. In structure based drug design one of the approaches to identify lead agents is to map the receptor/ligand binding epitope onto a small peptide. Data from theoretical, structural and functional studies have been adopted in the design of novel peptide antagonists of the IgSF protein-protein interactions. Many peptide antagonists have shown significant therapeutic potential in multiple animal models. The design of the IgSF peptide analogs, rationale as therapeutic targets, functional efficacy and the clinical benefits are reviewed here.  相似文献   

16.
Post-translational modifications (PTMs) (e.g., acetylation, methylation, and phosphorylation) play crucial roles in regulating the diverse protein-protein interactions involved in essentially every cellular process. While significant progress has been made to detect PTMs, profiling protein-protein interactions mediated by these PTMs remains a challenge. Here, we report a method that combines a photo-cross-linking strategy with stable isotope labeling in cell culture (SILAC)-based quantitative mass spectrometry to identify PTM-dependent protein-protein interactions. To develop and apply this approach, we focused on trimethylated lysine-4 at the histone H3 N-terminus (H3K4Me(3)), a PTM linked to actively transcribed gene promoters. Our approach identified proteins previously known to recognize this modification and MORC3 as a new protein that binds H3M4Me(3). This study indicates that our cross-linking-assisted and SILAC-based protein identification (CLASPI) approach can be used to profile protein-protein interactions mediated by PTMs, such as lysine methylation.  相似文献   

17.
Histone post‐translational modifications (HPTMs) provide signal platforms to recruit proteins or protein complexes to regulate gene expression. Therefore, the identification of these recruited partners (readers) is essential to understand the underlying regulatory mechanisms. However, it is still a major challenge to profile these partners because their interactions with HPTMs are rather weak and highly dynamic. Herein we report the development of a HPTM dual probe based on DNA‐templated technology and a photo‐crosslinking method for the identification of HPTM readers. By using the trimethylation of histone H3 lysine 4, we demonstrated that this HPTM dual probe can be successfully utilized for labeling and enrichment of HPTM readers, as well as for the discovery of potential HPTM partners. This study describes the development of a new chemical proteomics tool for profiling HPTM readers and can be adapted for broad biomedical applications.  相似文献   

18.
Conformational change and modification of proteins are involved in many cellular functions. However, they can also have adverse effects that are implicated in numerous diseases. How structural change promotes disease is generally not well‐understood. This perspective illustrates how mass spectrometry (MS), followed by toxicological and epidemiological validation, can discover disease‐relevant structural changes and therapeutic strategies. We (with our collaborators) set out to characterize the structural and toxic consequences of disease‐associated mutations and post‐translational modifications (PTMs) of the cytosolic antioxidant protein Cu/Zn‐superoxide dismutase (SOD1). Previous genetic studies discovered >180 different mutations in the SOD1 gene that caused familial (inherited) amyotrophic lateral sclerosis (fALS). Using hydrogen–deuterium exchange with mass spectrometry, we determined that diverse disease‐associated SOD1 mutations cause a common structural defect – perturbation of the SOD1 electrostatic loop. X‐ray crystallographic studies had demonstrated that this leads to protein aggregation through a specific interaction between the electrostatic loop and an exposed beta‐barrel edge strand. Using epidemiology methods, we then determined that decreased SOD1 stability and increased protein aggregation are powerful risk factors for fALS progression, with a combined hazard ratio > 300 (for comparison, a lifetime of smoking is associated with a hazard ratio of ~15 for lung cancer). The resulting structural model of fALS etiology supported the hypothesis that some sporadic ALS (sALS, ~80% of ALS is not associated with a gene defect) could be caused by post‐translational protein modification of wild‐type SOD1. We developed immunocapture antibodies and high sensitivity top‐down MS methods and characterized PTMs of wild‐type SOD1 using human tissue samples. Using global hydrogen–deuterium exchange, X‐ray crystallography and neurotoxicology, we then characterized toxic and protective subsets of SOD1 PTMs. To cap this perspective, we present proof‐of‐concept that post‐translational modification can cause disease. We show that numerous mutations (N➔D; Q➔E), which result in the same chemical structure as the PTM deamidation, cause multiple diseases. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
Aminoacyl tRNA synthetases are novel antibacterial drug target because of their important role in protein synthesis. In this study, we performed high throughput virtual screening of 205883 compounds from Asinex ligand database to identify potential specific inhibitors for Tyrosyl tRNA synthetase of Mycobacterium tuberculosis (MtbTyrRS). Compounds are ranked based on the glide extra precision docking score. It is noted that the top ranked compounds have caffeine scaffold. The top five caffeine analogs are further evaluated for other drug‐like properties. The binding energies of caffeine analogs are estimated using mixed mode quantum mechanics/molecular mechanics calculation. The results show that these caffeine analogs have good absorption, distribution, metabolism, and excretion properties and high binding affinity to the MtbTyrRS. This suggests that caffeine could be a new scaffold for designing inhibitors against Tyrosyl tRNA synthetase of M. tuberculosis. The top five caffeine analogs are also subjected to docking calculations with human cytosolic and mitochondrial Tyrosyl tRNA synthetases to ascertain their specificities toward MtbTyrRS. The comparative docking studies indicate that the top five caffeine analogs are specific for MtbTyrRS. © 2014 Wiley Periodicals, Inc.  相似文献   

20.
As part of the type I IFN signaling, the 2′-5′- oligoadenylate synthetase (OAS) proteins have been involved in the progression of several non-viral diseases. Notably, OAS has been correlated with immune-modulatory functions that promote chronic inflammatory conditions, autoimmune disorders, cancer, and infectious diseases. In spite of this, OAS enzymes have been ignored as drug targets, and to date, there are no reports of compounds that can inhibit their activity. In this study, we have used homology modeling and virtual high-throughput screening to identify potential inhibitors of the human proteins OAS1, OAS2, and OAS3. Altogether, we have found 37 molecules that could exert a competitive inhibition in the ATP binding sites of OAS proteins, independently of the activation state of the enzyme. This latter characteristic, which might be crucial for a versatile inhibitor, was observed in compounds interacting with the residues Asp75, Asp77, Gln229, and Tyr230 in OAS1, and their equivalents in OAS2 and OAS3. Although there was little correlation between specific chemical fragments and their interactions, intermolecular contacts with OAS catalytic triad and other critical amino acids were mainly promoted by heterocycles with π electrons and hydrogen bond acceptors. In conclusion, this study provides a potential set of OAS inhibitors as well as valuable information for their design, development, and optimization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号