首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, we have rationally designed and synthesized two new reagents ( L1 and L2 ), each bearing a pendant aldehyde functionality. This aldehyde group can take part in cyclization reactions with β‐ or γ‐amino thiols to yield the corresponding thiazolidine and thiazinane derivatives, respectively. The intramolecular charge‐transfer (ICT) bands of these thiazolidine and thiazinane derivatives are distinctly different from those of the molecular probes ( L1 and L2 ). Such changes could serve as a potential platform for using L1 and L2 as new colorimetric/fluorogenic as well as ratiometric sensors for cysteine (Cys) and homocysteine (Hcy) under physiological conditions. Both reagents proved to be specific towards Cys and Hcy even in the presence of various amino acids, glucose, and DNA. Importantly, these two chemodosimetric reagents could be used for the quantitative detection of Cys present in blood plasma by using a pre‐column HPLC technique. Such examples are not common in contemporary literature. MTT assay studies have revealed that these probes have low cytotoxicity. Confocal laser scanning micrographs of cells demonstrated that these probes could penetrate cell membranes and could be used to detect intracellular Cys/Hcy present within living cells. Thus, the results presented in this article not only demonstrate the efficiency and specificity of two ratiometric chemodosimeter molecules for the quantitative detection of Cys and Hcy, but also provide a strategy for developing reagents for analysis of these vital amino acids in biological samples.  相似文献   

2.
《化学:亚洲杂志》2018,13(18):2611-2618
The development of effective bioanalytical methods for rapid, sensitive and specific detection of HOCl in vitro and in vivo plays a key role for better understanding the roles of this molecule in normal and diseased conditions, but remains challenging due to the highly reactive nature of HOCl and the complicated biological conditions. In this work, a new fluorescence probe, PQI , was developed for monitoring of the HOCl level in biological samples. PQI was easily synthesized by a one‐step condensation reaction. Upon addition of HOCl, significant changes in the absorption spectra and the color of the solution were noticed, facilitating the “naked eye” detection of HOCl in PBS buffer. The fluorescence of PQI was found to be significantly increased within a few seconds, leading to “OFF‐ON” fluorescence response towards HOCl. The sensing mechanism, oxidation of thioether by HOCl, was confirmed by HRMS titration analysis. PQI features a large Stokes shift, high sensitivity and selectivity, and rapid fluorescence response towards HOCl. Quantitative detection of HOCl in single live cells was demonstrated through fluorescence imaging and flow cytometry analysis. PQI was then successfully used in visualisation of HOCl in live zebrafish and nude mice.  相似文献   

3.
Background autofluorescence from biological systems generally reduces the sensitivity of a fluorescent probe for imaging biological targets. Addressing this challenge requires the development of fluorescent probes that produce emission in the near‐infrared region. Herein, we report the design and synthesis of a fluorescent probe that generates an NIR emission with a large Stokes shift upon the selective response to Cys over Hcy and GSH. The probe is designed to consist of two Cys‐sensing sites, an acrylate ester and an aldehyde installed ortho to each other. The reaction of the probe with Cys triggers an excited state intramolecular proton transfer process upon photo‐excitation, thereby producing an NIR emission with a large Stokes shift. Accordingly, this probe hold great promise for the selective detection of Cys in biological systems. We further demonstrate the capacity of this probe for Cys imaging in living cells.  相似文献   

4.
5.
Seleno fluorescent probe : An organoselenium fluorescent probe (FSe‐1) for mercury was designed based on the irreversible deselenation mechanism. FSe‐1 exhibits an ultrahigh selectivity and sensitivity for Hg2+ detection only for reactive selenium atom sites, due the strong affinity between Se and Hg. Furthermore, the new probe has been successfully used for imaging mercury ions in RAW 264.7 cells (a mouse macrophage cell line; see figure).

  相似文献   


6.
程敬君  匡培根  张凤英  吴卫平 《色谱》1998,16(2):167-169
采用高效液相色谱法,用电化学检测手段成功地测定了沙土鼠脑纹状体微透析液内的谷胱甘肽(GSH)和半胱氨酸(Cys)。检测前用电化学自清洗方式能有效地提高玻璃碳电极的检测水平,使其具有较好的重现性和回收率。Cys和GSH的回收率分别为91.4%和87.3%。电化学检测的工作电压为0.9V,用外标法定量。由微透析探针获取的纹状体透析液Cys和GSH的浓度分别为68.59和65.54nmol/L,验证了方法的实用性和可靠性。  相似文献   

7.
Blood‐clot formation that results in the complete occlusion of a blood vessel (thrombosis) often leads to serious life‐threatening events, such as strokes and heart attacks. As the composition of a thrombus changes as it matures, new imaging methods that are capable of distinguishing new clots from old clots may yield important diagnostic and prognostic information. To address this need, an activatable magnetic resonance (MR) probe that is responsive to a key biochemical process associated with recently formed clots has been developed.  相似文献   

8.
Dimedone is the most widely used chemical probe for detection of cysteine sulfenic acid in peptides and proteins. The reaction of dimedone with cysteine sulfenic acid results in the formation of unique cysteine dimedone motif containing thioether bridge. Based on the structure of cysteine dimedone residue in polypeptide, a new building block of Fmoc-Cys(Dmd)-OH was developed for solid phase synthesis of peptide cysteine dimedone. Mass spectrometric sequencing of synthetic peptides have confirmed successful incorporation of cysteine dimedone in peptide chain using HBTU/HOBt as a coupling agent. The new method permits synthesis of peptides containing both cysteine thiol and cysteine dimedone in the same sequence which was difficult to achieve by conventional methods. The synthetic peptide of glutathione cysteine dimedone was used as a standard in probing the air-mediated oxidation of thiol to disulfide form of glutathione. The co-elution of standard peptide and reaction mixture of oxidation of glutathione in presence of dimedone using RP-HPLC have confirmed the formation of glutathione cysteine sulfenic as an intermediate in the air-mediated oxidation of glutathione. The synthetic peptides of cysteine dimedone may find application in the field of redox proteomics and generation of antibodies against modified cysteine residue.  相似文献   

9.
Selective and sensitive molecular probes for hydrogen peroxide (H2O2), which plays diverse roles in oxidative stress and redox signaling, are urgently needed to investigate the physiological and pathological effects of H2O2. A lack of reliable tools for in vivo imaging has hampered the development of H2O2 mediated therapeutics. By combining a specific tandem Payne/Dakin reaction with a chemiluminescent scaffold, H2O2‐CL‐510 was developed as a highly selective and sensitive probe for detection of H2O2 both in vitro and in vivo. A rapid 430‐fold enhancement of chemiluminescence was triggered directly by H2O2 without any laser excitation. Arsenic trioxide induced oxidative damage in leukemia was successfully detected. In particular, cerebral ischemia‐reperfusion injury‐induced H2O2 fluxes were visualized in rat brains using H2O2‐CL‐510 , providing a new chemical tool for real‐time monitoring of H2O2 dynamics in living animals.  相似文献   

10.
This study reports an activatable iridium(III) complex probe for phosphorescence/time-gated luminescence detection of cysteine (Cys) in vitro and in vivo. The probe, [Ir(ppy)2(NTY-bpy)](PF6) [ppy: 2-phenylpyridine; NTY-bpy: 4-methyl-4′-(2-nitrovinyl)-2,2′-bipyridine], is developed by incorporating a strong electron-withdrawing group, nitroolefin, into a bipyridine ligand of the IrIII complex. The luminescence of the probe is quenched owing to the intramolecular charge transfer (ICT) process, but switched on by a specific recognition reaction between the probe and Cys. [Ir(ppy)2(NTY-bpy)](PF6) shows high sensitivity and selectivity for Cys detection and good biocompatibility. The long-lived emission of [Ir(ppy)2(NTY-bpy)](PF6) allows time-gated luminescence analysis of Cys in cells and human sera. These properties make it convenient for the phosphorescence and time-gated luminescence imaging and flow cytometry analysis of Cys in live samples. The Cys images in cancer cells and inflamed macrophage cells reveal that [Ir(ppy)2(NTY-bpy)](PF6) is distributed in mitochondria after cellular internalization. Visualizations and flow cytometry analysis of mitochondrial Cys levels and Cys-mediated redox activities of live cells are achieved. By using [Ir(ppy)2(NTY-bpy)](PF6) as a probe, in vivo sensing and imaging of Cys in D. magna, zebrafish, and mice are then demonstrated.  相似文献   

11.
刘学文  唐裕才 《应用化学》2019,36(12):1456-1461
为了检测半胱氨酸和高半胱氨酸,本文合成了一种基于钌(Ⅱ)配合物的荧光探针。 结果表明,该探针可实现对半胱氨酸和高半胱氨酸的较好的灵敏性和选择性检测。 在优化的实验条件下,5~35 μmol/L浓度区间,探针的荧光强度与半胱氨酸和高半胱氨酸浓度呈良好的线性关系。 其检测限分别为0.60和0.78 μmol/L。 该研究为基于钌(Ⅱ)配合物的荧光探针定量检测生物活性分子提供了一种有用的方法。  相似文献   

12.
Endogenous vicinal‐dithiol‐containing proteins (VDPs) that have two thiol groups close to each other in space play a significant importance in maintaining the cellular redox microenvironment. Approaches to identify VDPs mainly rely on monitoring the different concentration of monothiol and total thiol groups or on indirect labeling of vicinal thiols by using p‐aminophenylarsenoxide ( PAO ). Our previous work has reported the direct labeling of VDPs with a highly selective receptor PAO analogue, which could realize fluorescence detection of VDPs directly in living cells. Herein, we developed a conjugated approach to expand detectable tags to nitrobenzoxadiazole (NBD), fluorescein, naphthalimide, and biotin for the synthesis of a series of probes. Different linkers have also been introduced toward conjugation of VTA2 with these functional tags. These synthesized flexible probes with various features will offer new tools for the potential identification and visualization of vicinal dithiols existing in different regions of VDPs in living cells. These probes are convenient tools for proteomics studies of various disease‐related VDPs and for the discovery of new drug targets.  相似文献   

13.
Herein, we report the development of two fluorescent probes for the highly selective and sensitive detection of H2S. The probes take advantage of a CuII? cyclen complex, which acts as a reaction center for H2S and as a quencher of BODIPY (boron‐dipyrromethene)‐based fluorophores with emissions at 765 and 680 nm, respectively. These non‐fluorescent probes could only be turned on by the addition of H2S, and not by other potentially interfering biomolecules, including reactive oxygen species, cysteine, and glutathione. In a chemical system, both probes detected H2S with a detection limit of 80 nM . The probes were successfully used for the endogenous detection of H2S in HEK 293 cells, for measuring the H2S‐release activity of dietary organosulfides in MCF‐7 cells, and for the in vivo imaging of H2S in mice.  相似文献   

14.
The selective and efficient monitoring of mercury (Hg2+) contamination found in the environment and ecosystem has been carried out. Thus, a new 1,8-naphthalimide-based fluorescent probe NADP for the detection of Hg2+ based on a fluorescence enhancement strategy has been designed and synthesized. The NADP probe can detect Hg2+ with high selectivity and sensitivity and a low detection limit of 13 nm . The detection mechanism was based on a Hg2+-triggered deprotection reaction, resulting in a dramatic change in fluorescence from colorless to green at physiological pH. Most importantly, biological investigation has shown that the NADP probe can be successfully applied to the monitoring of Hg2+ in living cells and zebrafish with low cytotoxicity.  相似文献   

15.
A naphthalimide‐based fluorescent probe, LyNP‐NO , was designed and synthesized for the selective detection of exogenously and endogenously generated nitric oxide (NO) in C6 glial cells. In addition, LyNP‐NO was also explored for monitoring endogenous NO levels in rat hippocampus at various tissue depths by stimulating the brain with N‐methyl‐d ‐aspartate (NMDA).  相似文献   

16.
A new strategy for fast fluorescent detection of cysteine (Cys), based on a response‐assisted electrostatic attraction, is demonstrated. By utilizing this strategy, we designed and synthesized three fluorescent probes for the specific detection of Cys under actual physiological conditions. The probe m‐ CP , a coumarin fluorophore conjugated with a substituted methyl pyridinium group through an unsaturated ketone unit, showed highly selective and sensitive detection for cysteine (Cys) over homocysteine (Hcy) and glutathione (GSH). The kinetic analysis indicated that the sensing process was highly accelerated (a response time less than 1 min) by the response‐assisted electrostatic attraction. More importantly, control experiments with isomeric probes first demonstrated that the spatial charge configuration of the probe played an important role in Cys‐preferred selectivity and kinetic rate acceleration. Furthermore, the practical utility of the probe m‐ CP in the fluorescent labeling of Cys residues within proteins was demonstrated. Finally, these probes were employed in living cell imaging with HeLa cells, in which it displayed satisfactory cell permeability and enabled us to distinguish active thiols in the cytoplasm, nucleus, and mitochondria.  相似文献   

17.
The novel ratiometric fluorescent probe HPQRB with an ESIPT effect based on Michael addition for highly sensitive and fast detection of sulfite in living HepG2 cells is reported. HPQRB can be easily synthesized by a two-step condensation reaction. HPQRB has a large emission shift (Δλ=116 nm), which is beneficial for fluorescence imaging research, and its sulfite-responsive site is based on a rhodamine-like structure with the emission peak at 566 nm, which decreases with increasing sulfite concentration. and its HPQ structure always has an ESIPT effect throughout the reaction process, keeping the emission peak at 450 nm as a self-reference. In particular, HPQRB has high selectivity for sulfite and responds quickly (within 30 s) with a low detection limit (44 nM). Furthermore, HPQRB has been successfully used for fluorescence imaging of sulfite in HepG2 cells, demonstrating the superior ability to detect sulfite under physiological conditions.  相似文献   

18.
Vicinal‐sulfydryl‐containing peptides/proteins (VSPPs) play a crucial role in human pathologies. Fluorescent probes that are capable of detecting intracellular VSPPs in vivo would be useful tools to explore the mechanisms of some diseases. In this study, by regulating the spatial separation of two maleimide groups in a fluorescent dye to match that of two active cysteine residues contained in the conserved amino acid sequence (–CGPC–) of human thioredoxin, two active‐site‐matched fluorescent probes, o‐Dm‐Ac and m‐Dm‐Ac, were developed for real‐time imaging of VSPPs in living cells. As a result, the two probes can rapidly respond to small peptide models and reduced proteins, such as WCGPCK (W‐6), WCGGPCK (W‐7), and WCGGGPCK (W‐8), reduced bovine serum albumin (rBSA), and reduced thioredoxin (rTrx). Moreover, o‐Dm‐Ac displays a higher binding sensitivity with the above‐mentioned peptides and proteins, especially with W‐7 and rTrx. Furthermore, o‐Dm‐Ac was successfully used to rapidly and directly detect VSPPs both in vitro and in living cells. Thus, a novel probe‐design strategy was proposed and the synthesized probe applied successfully in imaging of target proteins in situ.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号