首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hybrid materials integrated with a variety of physical properties, such as spin crossover (SCO) and fluorescence, may show synergetic effects that find applications in many fields. Herein we demonstrate a promising post‐synthetic approach to achieve such materials by grafting fluorophores (1‐pyrenecarboxaldehyde and Rhodamine B) on one‐dimensional SCO FeII structures. The resulting hybrid materials display expected one‐step SCO behavior and fluorescent properties, in particular showing a coupling between the transition temperature of SCO and the temperature where the fluorescent intensity reverses. Consequently, synergetic effect between SCO and fluorescence is incorporated into materials despite different fluorophores. This study provides an effective strategy for the design and development of novel magnetic and optical materials.  相似文献   

2.
Formation of either a dimetallic compound or a 1 D coordination polymer of adiponitrile adducts of [Fe(bpte)]2+ (bpte=[1,2‐bis(pyridin‐2‐ylmethyl)thio]ethane) can be controlled by the choice of counteranion. The iron(II) atoms of the bis(adiponitrile)‐bridged dimeric complex [Fe2(bpte)22‐(NC(CH2)4CN)2](SbF6)4 ( 2 ) are low spin at room temperature, as are those in the polymeric adiponitrile‐linked acetone solvate polymer {[Fe(bpte)(μ2‐NC(CH2)4CN)](BPh4)2 ? Me2CO} ( 3? Me2CO). On heating 3? Me2CO to 80 °C, the acetone is abruptly removed with an accompanying purple to dull lavender colour change corresponding to a conversion to a high‐spin compound. Cooling reveals that the desolvate 3 shows hysteretic and abrupt spin crossover (SCO) S=0?S=2 behaviour centred at 205 K. Non‐porous 3 can reversibly absorb one equivalent of acetone per iron centre to regenerate the same crystalline phase of 3? Me2CO concurrently reinstating a low‐spin state.  相似文献   

3.
Unprecedented anionic FeIII spin crossover (SCO) complexes involving a weak‐field O,N,O‐tridentate ligand were discovered. The SCO transition was evidenced by the temperature variations in magnetic susceptibility, Mössbauer spectrum, and coordination structure. The DFT calculations suggested that larger coefficients on the azo group in the HOMO?1 of a ligand might contribute to the enhancement of a ligand‐field splitting energy. The present anionic SCO complex also exhibited the light‐ induced excited‐spin‐state trapping effect.  相似文献   

4.
5.
The spin crossover salt [Fe(bpp)2](isonicNO)2⋅ 2.4 H2O ( 1 ⋅2.4 H2O) (bpp=2,6-bis(pyrazol-3-yl)pyridine; isonicNO=isonicotinate N-oxide anion) exhibits a very abrupt spin crossover at T1/2=274.4 K. This triggers a supramolecular linkage (H-bond) isomerization that responds reversibly towards light irradiation or temperature change. Isotopic effects in the thermomagnetic behavior reveal the importance of hydrogen bonds in defining the magnetic state. Further, the title compound can be reversibly dehydrated to afford 1 , a material that also exhibits spin crossover coupled to H-bond isomerization, leading to strong kinetic effects in the thermomagnetic properties.  相似文献   

6.
We previously reported the dinuclear material [FeII2(ddpp)2(NCS)4] ? 4 CH2Cl2 ( 1? 4 CH2Cl2; ddpp=2,5‐di(2′,2′′‐dipyridylamino)pyridine) and its partially desolvated analogue ( 1? CH2Cl2), which undergo two‐ and one‐step spin‐crossover (SCO) transitions, respectively. Here, we manipulate the type and degree of solvation in this system and find that either a one‐ or two‐step spin transition can be specifically targeted. The chloroform clathrate 1? 4 CHCl3 undergoes a relatively abrupt one‐step SCO, in which the two equivalent FeII sites within the dinuclear molecule crossover simultaneously. Partial desolvation of 1? 4 CHCl3 to form 1? 3 CHCl3 and 1? CHCl3 occurs through single‐crystal‐to‐single‐crystal processes (monoclinic C2/c to P21/n to P21/n) in which the two equivalent FeII sites become inequivalent sites within the dinuclear molecule of each phase. Both 1? 3 CHCl3 and 1? CHCl3 undergo one‐step spin transitions, with the former having a significantly higher SCO temperature than 1? 4 CHCl3 and the latter, and each has a broader SCO transition than 1? 4 CHCl3, attributable to the overlap of two SCO steps in each case. Further magnetic manipulation can be carried out on these materials through reversibly resolvating the partially desolvated material with chloroform to produce the original one‐step SCO, or with dichloromethane to produce a two‐step SCO reminiscent of that seen for 1? 4 CH2Cl2. Furthermore, we investigate the light‐induced excited spin state trapping (LIESST) effect on 1? 4 CH2Cl2 and 1? CH2Cl2 and observe partial LIESST activity for the former and no activity for the latter.  相似文献   

7.
8.
朱敦如  齐丽  程慧敏  沈旋  卢伟 《化学进展》2009,21(6):1187-1198
自旋交叉配合物具有理想的分子双稳态,可用作新型的热开关、光开关和信息存储器件。本文对近三年来Fe(II)自旋交叉分子材料的重要研究进展进行了综述,主要讨论了转变温度在室温附近的Fe(II)自旋交叉配合物以及具有光致激发自旋态捕获(LIESST)效应和多功能的Fe(II)自旋交叉分子材料,并对Fe(II)自旋交叉分子材料的应用前景作了探讨。  相似文献   

9.
A new bis(pyrazolylpyridine) ligand (H2L) has been prepared to form functional [Fe2(H2L)3]4+ metallohelicates. Changes to the synthesis yield six derivatives, X@[Fe2(H2L)3]X(PF6)2?xCH3OH ( 1 , x=5.7 and X=Cl; 2 , x=4 and X=Br), X@[Fe2(H2L)3]X(PF6)2?yCH3OH?H2O ( 1 a , y=3 and X=Cl; 2 a , y=1 and X=Br) and X@[Fe2(H2L)3](I3)2?3 Et2O ( 1 b , X=Cl; 2 b , X=Br). Their structure and functional properties are described in detail by single‐crystal X‐ray diffraction experiments at several temperatures. Helicates 1 a and 2 a are obtained from 1 and 2 , respectively, by a single‐crystal‐to‐single‐crystal mechanism. The three possible magnetic states, [LS–LS], [LS–HS], and [HS–HS] can be accessed over large temperature ranges as a result of the structural nonequivalence of the FeII centers. The nature of the guest (Cl? vs. Br?) shifts the spin crossover (SCO) temperature by roughly 40 K. Also, metastable [LS–HS] or [HS–HS] states are generated through irradiation. All helicates (X@[Fe2(H2L)3])3+ persist in solution.  相似文献   

10.
11.
12.
Domain wall motion is detected for the first time during the transition to a ferroelastic and spin state ordered phase of a spin crossover complex. Single-crystal X-ray diffraction and resonant ultrasound spectroscopy (RUS) revealed two distinct symmetry-breaking phase transitions in the mononuclear Mn3+ compound [Mn(3,5-diBr-sal2(323))]BPh4, 1. The first at 250 K, involves the space group change CcPc and is thermodynamically continuous, while the second, PcP1 at 85 K, is discontinuous and related to spin crossover and spin state ordering. Stress-induced domain wall mobility was interpreted on the basis of a steep increase in acoustic loss immediately below the the Pc-P1 transition  相似文献   

13.
How low can you go? An FeII4 square was prepared by self‐assembly and exhibits both thermally induced and photoinduced spin crossover from a system with four high‐spin (HS) centers to one with two high‐spin and two low‐spin (LS) centers. The spin‐crossover sites are located on the same side of the square, and the spin transition and magnetic interactions (see picture) are synergistically coupled.

  相似文献   


14.
Crystalline [Fe(bppSMe)2][BF4]2 ( 1 ; bppSMe=4‐(methylsulfanyl)‐2,6‐di(pyrazol‐1‐yl)pyridine) undergoes an abrupt spin‐crossover (SCO) event at 265±5 K. The crystals also undergo a separate phase transition near 205 K, involving a contraction of the unit‐cell a axis to one‐third of its original value (high‐temperature phase 1; Pbcn, Z=12; low‐temperature phase 2; Pbcn, Z=4). The SCO‐active phase 1 contains two unique molecular environments, one of which appears to undergo SCO more gradually than the other. In contrast, powder samples of 1 retain phase 1 between 140–300 K, although their SCO behaviour is essentially identical to the single crystals. The compounds [Fe(bppBr)2][BF4]2 ( 2 ; bppBr=4‐bromo‐2,6‐di(pyrazol‐1‐yl)pyridine) and [Fe(bppI)2][BF4]2 ( 3 ; bppI=4‐iodo‐2,6‐di(pyrazol‐1‐yl)‐pyridine) exhibit more gradual SCO near room temperature, and adopt phase 2 in both spin states. Comparison of 1 – 3 reveals that the more cooperative spin transition in 1 , and its separate crystallographic phase transition, can both be attributed to an intermolecular steric interaction involving the methylsulfanyl substituents. All three compounds exhibit the light‐induced excited‐spin‐state trapping (LIESST) effect with T(LIESST=70–80 K), but show complicated LIESST relaxation kinetics involving both weakly cooperative (exponential) and strongly cooperative (sigmoidal) components.  相似文献   

15.
Reaction of 1,2-di(tetrazol-2-yl)ethane (ebtz) with Fe(BF4)2⋅6 H2O in different nitriles yields one-dimensional coordination polymers [Fe(ebtz)2(RCN)2](BF4)2nRCN (n=2 for R=CH3 ( 1 ) and n=0 for R=C2H5 ( 2 ) C3H7 ( 3 ), C3H5 ( 4 ), CH2Cl ( 5 )) exhibiting spin crossover (SCO). SCO in 1 and 3 – 5 is complete and occurs above 160 K. In 2 , it is shifted to lower temperatures and is accompanied by wide hysteresis (T1/2=78 K, T1/2=123 K) and proceeds extremely slowly. Isothermal (80 K) time-resolved single-crystal X-ray diffraction studies revealed a complex nature for the HS→LS transition in 2 . An initial, slow stage is associated with shrinkage of polymeric chains and with reduction of volume at 77 % (in relation to the difference between cell volumes VHS−VLS) whereas only 16 % of iron(II) ions change spin state. In the second stage, an abrupt SCO occurs, associated with breathing of the crystal lattice along the direction of the Fe–nitrile bonds, while the nitriles reorient. HS→LS switching triggered by light (808 nm) reveals the coupling of spin state and nitrile orientation. The importance of this coupling was confirmed by studies of [Fe(ebtz)2(C2H5CN/C3H7CN)2](BF4)2 mixed crystals ( 2 a , 2 b ), showing a shift of T1/2 to higher values and narrowing of the hysteresis loop concomitant with an increase of the fraction of butyronitrile. This increase reduces the capability of nitrile molecules to reorient. Density functional theory (DFT) studies of models of 1 – 5 suggest a particular possibility of 2 to adopt a low (140–145°) value of its Fe-N-C(propionitrile) angle.  相似文献   

16.
17.
Homoleptic iron complexes of six bis(pyridylimino)isoindoline (bpi) ligands with different substituents (H, Me, Et, tBu, OMe, NMe2) at the 4‐positions of the pyridine moieties have been prepared and studied with regard to temperature‐dependent spin and redox states by a combination of 57Fe Mössbauer spectroscopy, SQUID magnetometry, single‐crystal X‐ray diffraction analysis, X‐band EPR, and 1H NMR spectroscopy. While the H‐, methyl‐, and ethyl‐substituted complexes remain in a pure high‐spin state irrespective of the temperature, the 4‐tert‐butyl‐substituted derivative shows spin‐crossover behavior. The methoxy‐ and dimethylamino‐substituted compounds were found to easily undergo oxidation. In the crystalline state, valence tautomeric behavior was observed for the methoxy derivative as a thermally activated charge‐transfer transition, accompanied by a spin crossover above 200 K. The valence tautomerism leads to a chelate with one of the bpi ligands as a dianion radical L2?. and with an effective spin of S=2.  相似文献   

18.
The abrupt high spin (HS)→low spin (LS) transition (T1/2=136 K) in [Fe(hbtz)2(CH3CN)2](BF4)2 (hbtz=1,6-di(tetrazol-2-yl)hexane) is finished at 100 K and further thermal treatment influences the spin crossover. Subsequent heating involves a change of the spin state in the same way (T1/2=136 K) on cooling. In contrast, cooling below 100 K triggers different behavior and T1/2 is shifted to 170 K. The extraordinary structural changes that occurred below 100 K are responsible for the observed diversity of properties. A unique feature of the low-temperature phase is the rebuilding of the anion network expressed by a shift of anions inside the polymeric layer at a distance of 1.2 Å as well as the relative shift of neighboring layers at over 4 Å. These structural alterations, connected with a phase transition, become the origin of the strain, which in most cases causes crystal cleaving. In a sample composed from crystals crushed as a result of the phase transition or as a result of mechanical crumbling, the hysteresis loop vanishes; however, annealing the sample allows to its partial restoration. A replacement of acetonitrile by other nitriles leads to preservation of the polymeric structure and spin crossover, but no phase transition follows.  相似文献   

19.
Domain wall motion is detected for the first time during the transition to a ferroelastic and spin state ordered phase of a spin crossover complex. Single‐crystal X‐ray diffraction and resonant ultrasound spectroscopy (RUS) revealed two distinct symmetry‐breaking phase transitions in the mononuclear Mn3+ compound [Mn(3,5‐diBr‐sal2(323))]BPh4, 1. The first at 250 K, involves the space group change CcPc and is thermodynamically continuous, while the second, PcP1 at 85 K, is discontinuous and related to spin crossover and spin state ordering. Stress‐induced domain wall mobility was interpreted on the basis of a steep increase in acoustic loss immediately below the the PcP1 transition  相似文献   

20.
Discrete molecular species that can perform certain functions in response to multiple external stimuli constitute a special class of multifunctional molecular materials called smart molecules. Herein, cyanido-bridged coordination clusters {[FeII(2-pyrpy)2]4[MIV(CN)8]2} ⋅ 4 MeOH ⋅ 6 H2O (M=Mo ( 1 solv ), M=W ( 2 solv ) and 2-pyrpy=2-(1-pyrazolyl)pyridine are presented, which show persistent solvent driven single-crystal-to-single-crystal transformations upon sorption/desorption of water and methanol molecules. Three full desolvation–resolvation cycles with the concomitant change of the host molecules do not damage the single crystals. More importantly, the Fe4M2 molecules constitute a unique example where the presence of the guests directly affects the pressure-induced thermal spin crossover (SCO) phenomenon occurring at the FeII centres. The hydrated phases show a partial SCO with approximately two out-of-four FeII centres undergoing a gradual thermal SCO at 1 GPa, while in the anhydrous form the pressure-induced SCO effect is almost quenched with only 15 % of the FeII centres undergoing high-spin to low-spin transition at 1 GPa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号