首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
The synthesis, structure, and magnetic properties of five lanthanide complexes with multidentate oxime ligands are described. Complexes 1 and 2 ( 1 : [La2(pop)2(acac)4(CH3OH)], 2 : [Dy2(pop)(acac)5]) are synthesized from the 2‐hydroxyimino‐N‐[1‐(2‐pyridyl)ethylidene]propanohydrazone (Hpop) ligand, while 3 , 4 , and 5 ( 3 : [Dy2(naphthsaoH)2(acac)4H(OH)]?0.85 CH3CN?1.58 H2O; 4 : [Tb2(naphthsaoH)2(acac)4H(OH)]?0.52 CH3CN?1.71 H2O; 5 : [La6(CO3)2(naphthsao)5 (naphthsaoH)0.5(acac)8(CO3)0.5(CH3OH)2.76H5.5(H2O)1.24]?2.39 CH3CN?0.12 H2O) contain 1‐(1‐hydroxynaphthalen‐2‐yl)‐ethanone oxime (naphthsaoH2). In 1 – 4 , dinuclear [Ln2] complexes crystallize, whereas hexanuclear LaIII complex 5 is formed after fixation of atmospheric carbon dioxide. DyIII‐based complexes 2 and 3 display single‐molecule‐magnet properties with energy barriers of 27 and 98 K, respectively. The presence of a broad and unsymmetrical relaxation mode observed in the ac susceptibility data for 3 suggest two different dynamics of the magnetization which might be a consequence of independent relaxation processes of the two different Dy3+ ions.  相似文献   

6.
7.
The rational synthesis of the 2‐{1‐methylpyridine‐N‐oxide‐4,5‐[4,5‐bis(propylthio)tetrathiafulvalenyl]‐1H‐benzimidazol‐2‐yl}pyridine ligand ( L ) is described. It led to the tetranuclear complex [Dy4(tta)12( L )2] ( Dy‐Dy2‐Dy ) after coordination reaction with the precursor Dy(tta)3?2 H2O (tta?=2‐thenoyltrifluoroacetonate). The X‐ray structure of Dy‐Dy2‐Dy can be described as two terminal mononuclear units bridged by a central antiferromagnetically coupled dinuclear complex. The terminal N2O6 and central O8 environments are described as distorted square antiprisms. The ac magnetism measurements revealed a strong out‐of‐phase signal of the magnetic susceptibility with two distinct sets of data. The high‐ and low‐frequency components were attributed to the two terminal mononuclear single‐molecule magnets (SMMs) and the central dinuclear SMM, respectively. A magnetic hysteresis loop was detected at very low temperature. From both structural and magnetic points of view, the tetranuclear SMM Dy‐Dy2‐Dy is a self‐assembly of two known mononuclear SMMs bridged by a known dinuclear SMM.  相似文献   

8.
《化学:亚洲杂志》2017,12(21):2772-2779
Single‐molecule magnets (SMMs) exhibiting slow relaxation of magnetization of purely molecular origin are highly attractive owing to their potential applications in spintronic devices, high‐density information storage, and quantum computing. In particular, lanthanide SMMs have been playing a major role in the advancement of this field because of the large intrinsic magnetic anisotropy of lanthanide metal ions. Herein, some recent breakthroughs that are changing the perspective of the field are highlighted, with special emphasis on synthetic strategies towards the design of high‐performance SMMs.  相似文献   

9.
Single‐molecule magnets comprising one spin center represent a fundamental size limit for spin‐based information storage. Such an application hinges upon the realization of molecules possessing substantial barriers to spin inversion. Axially symmetric complexes of lanthanides hold the most promise for this due to their inherently high magnetic anisotropies and low tunneling probabilities. Herein, we demonstrate that strikingly large spin reversal barriers of 216 and 331 cm?1 can also be realized in low‐symmetry lanthanide tetraphenylborate complexes of the type [Cp*2Ln(BPh4)] (Cp*=pentamethylcyclopentadienyl; Ln=Tb ( 1 ) and Dy ( 2 )). The dysprosium congener showed hysteretic magnetization data up to 5.3 K. Further studies of the magnetic relaxation processes of 1 and 2 under applied dc fields and upon dilution within a matrix of [Cp*2Y(BPh4)] revealed considerable suppression of the tunneling pathway, emphasizing the strong influence of dipolar interactions on the low‐temperature magnetization dynamics in these systems.  相似文献   

10.
Two nanosized Mn49 and Mn25Na4 clusters based on analogues of the high‐spin (S=22) [MnIII6MnII44‐O)4]18+ supertetrahedral core are reported. Mn49 and Mn25Na4 complexes consist of eight and four decametallic supertetrahedral subunits, respectively, display high virtual symmetry (Oh), and are unique examples of clusters based on a large number of tightly linked high nuclearity magnetic units. The complexes also have large spin ground‐state values (Mn49: S=61/2; Mn25Na4: S=51/2) with the Mn49 cluster displaying single‐molecule magnet (SMM) behavior and being the second largest reported homometallic SMM.  相似文献   

11.
Polyoxometalates (POMs) with heterodinuclear lanthanoid cores, TBA8H4[{Ln(μ2‐OH)2Ln′}(γ‐SiW10O36)2] ( LnLn′ ; Ln=Gd, Dy; Ln′=Eu, Yb, Lu; TBA=tetra‐n‐butylammonium), were successfully synthesized through the stepwise incorporation of two types of lanthanoid cations into the vacant sites of lacunary [γ‐SiW10O36]8? units without the use of templating cations. The incorporation of a Ln3+ ion into the vacant site between two [γ‐SiW10O36]8? units afforded mononuclear Ln3+‐containing sandwich‐type POMs with vacant sites ( Ln1 ; TBA8H5[{Ln(H2O)4}(γ‐SiW10O36)2]; Ln=Dy, Gd, La). The vacant sites in Ln1 were surrounded by coordinating W? O and Ln? O oxygen atoms. On the addition of one equivalent of [Ln′(acac)3] to solutions of Dy1 or Gd1 in 1,2‐dichloroethane (DCE), heterodinuclear lanthanoid cores with bis(μ2‐OH) bridging ligands, [Dy(μ2‐OH)2Ln′]4+, were selectively synthesized ( LnLn′ ; Ln=Dy, Gd; Ln′=Eu, Yb, Lu). On the other hand, La1 , which contained the largest lanthanoid cation, could not accommodate a second Ln′3+ ion. DyLn′ showed single‐molecule magnet behavior and their energy barriers for magnetization reversal (ΔE/kB) could be manipulated by adjusting the coordination geometry and anisotropy of the Dy3+ ion by tuning the adjacent Ln′3+ ion in the heterodinuclear [Dy(μ2‐OH)2Ln′]4+ cores. The energy barriers increased in the order: DyLu (ΔE/kB=48 K)< DyYb (53 K)< DyDy (66 K)< DyEu (73 K), with an increase in the ionic radii of Ln′3+; DyEu showed the highest energy barrier.  相似文献   

12.
13.
14.
15.
16.
[{Dy(hfac)(3)}(2){Fe(bpca)(2)}] x CHCl(3) ([Dy(2)Fe]) and [{Dy(hfac)(3)}(2){Ni(bpca)(2)}]CHCl(3) ([Dy(2)Ni]) (in which hfac(-)=1,1,1,5,5,5-hexafluoroacetylacetonate and bpca(-)=bis(2-pyridylcarbonyl)amine anion) were synthesized and characterized. Single-crystal X-ray diffraction shows that [Dy(2)Fe] and [Dy(2)Ni] are linear trinuclear complexes. Static magnetic susceptibility measurements reveal a weak ferromagnetic exchange interaction between Ni(II) and Dy(III) ions in [Dy(2)Ni], whereas the use of the diamagnetic Fe(II) ion leads to the absence of magnetic exchange interaction in [Dy(2)Fe]. Dynamic susceptibility measurements show a thermally activated behavior with the energy barrier of 9.7 and 4.9 K for the [Dy(2)Fe] and [Dy(2)Ni] complexes, respectively. A surprising negative effect of the ferromagnetic exchange interaction has been found and has been attributed to the structural conformation of these trinuclear complexes.  相似文献   

17.
18.
Three pairs of enantiopure chiral triangular Ln3 clusters, [Ln3LRRRRRR/SSSSSS3‐OH)2(H2O)2(SCN)4]?xCH3OH?yH2O ( R ‐Dy3 , Ln=Dy, x=6, y=0; S ‐Dy3 , Ln=Dy, x=6, y=1; R ‐Ho3 , Ln=Ho, x=6, y=1; S ‐Ho3 , Ln=Ho, x=6, y=1; R ‐Er3 , Ln=Er, x=6, y=0; S ‐Er3 , Ln=Er, x=6, y=1), have been successfully synthesized by a rational enantioselective synthetic strategy. The core of triangular Ln3 is bound in the central N6O3 of the macrocyclic ligand, and the coordination spheres of Ln ions are completed by four SCN? anions and two H2O molecules in axial positions of the macrocycle. The circular dichroism (CD) and vibrational circular dichroism (VCD) spectra of the enantiomers demonstrate that the chirality is successfully transferred from the ligands to the resulting Ln3 clusters. Ac susceptibility measurements reveal that single‐molecule magnet behavior occurs for both enantiopure clusters of R ‐Dy3 and S ‐Dy3 . This work is one of the few examples of the successful design of a pair of triangular Dy3 clusters showing simultaneously slow magnetic relaxation and optical activity, and this might open up new opportunities to develop novel multifunctional materials.  相似文献   

19.
A linear tetranuclear 3d–4f Co2Dy2 cluster assembled from a polydentate Schiff base exhibits single‐molecule magnet (SMM) behavior with an anisotropic barrier of 33.8 K. Due to the presence of diamagnetic cobalt(III) ions, the tetranuclear cluster of 1 behaves magnetically like a dinuclear Dy2 system. However, the diamagnetic segment might efficiently minimize undesirable intermolecular magnetic interactions, thereby improving the performance of the SMM behavior of 1 . This discrete complex presents us with a unique opportunity to study the magnetic properties and to probe the dynamics of magnetization in a magnetically isolated Dy2 system.  相似文献   

20.
Acetato-bridged palladium–lanthanide tetranuclear heterometallic complexes of the form [Pd2Ln2(H2O)2(CH3COO)10] ⋅ 2 CH3COOH [Ln2=Ce2 ( 1 ), Pr2 ( 2 ), Nd2 ( 3 ), Sm2 ( 4 ), Tb2 ( 5 ), Dy2 ( 6 ), Dy0.2Y1.8 ( 6′′ ), Ho2 ( 7 ), Er2 ( 8 ), Er0.24Y1.7 ( 8′′ ), Tm2 ( 9 ), Yb2 ( 10 ), Y2( 11 )] were synthesised and characterised by experimental and theoretical techniques. All complexes containing Kramers lanthanide ions [Ln3+=Ce ( 1 ), Nd ( 3 ), Sm ( 4 ), Dy ( 6 ), DyY ( 6′′ ), Er ( 8 ), ErY ( 8′′ ), Yb ( 10 )] showed field-induced slow magnetic relaxation, characteristic of single-molecule magnetism and purely of molecular origin. In contrast, all non-Kramers lanthanide ions [Ln3+=Pr ( 2 ), Tb ( 5 ), Ho ( 7 ), Tm ( 9 ), Y3+ ( 11 ) is diamagnetic and non-lanthanide] did not show any slow magnetic relaxation. The variation in the electronic structure and accompanying consequences across the complexes representing all Kramers and non-Kramers lanthanide ions were investigated. The origin of the magnetic properties and the extent to which the axial donor–acceptor interaction involving the lanthanide ions and an electron-deficient orbital of palladium affects the observed magnetic and electronic properties across the lanthanide series are presented. Unique consistent electronic and magnetic properties of isostructural complexes spanning the lanthanide series with properties dependent on whether the ions are Kramers or non-Kramers are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号