首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Organic room temperature phosphorescence (RTP) attracts extensive attentions, but still faces the challenge of achieving both high RTP efficiencies (ηRTP) and long lifetimes (τRTP), due to the intrinsic contradiction between triplet radiation and stabilization. In this work, we developed three carbazole-triphenylphosphine hybrids named xCzTPP, in which phosphine groups provide nonbonding electrons and steric hindrance to modulate intermolecular p-π and π-π interactions. With the rational orientations and spatial positions of functional groups, para-substituted pCzTPP achieves high ηRTP over 10 % and more than twofold increased τRTP (>600 ms), compared to ortho- and meta- isomers. Theoretical simulation and photophysical investigation indicate that the strongest intermolecular p-π and π-π electronic interplays of pCzTPP harmonize high transition probability of 3pπ state and triplet stability of 3ππ state, reflecting the p-π and π-π synergy in RTP process.  相似文献   

2.
Herein, norbornyl (NB), a bulky annular nonconjugated spacer, is melded into π systems to construct two groups of ladder-type room-temperature phosphorescence (RTP) luminogens. The effect of the NB on π-π interactions, packing modes and RTP performance is explored systematically. The experimental and computational results demonstrate the versatility of NB in reducing π-π distances and synergistically intensifying the intermolecular interactions, which not only induces intersystem crossing from S1 to Tn but also diminishes the nonradiative decay of triplet excitons. Impressively, 1800-fold phosphorescence lifetime enhancement is achieved in comparison with the reference compounds without NB. The molecular packing and RTP performance can be further modulated by the length of the backbones and terminal end-groups. It is quite peculiar that NB-annulated phthalic acid exhibits reversible photochromism in the solid state, likely due to the formation of persistent radical pairs. Our study paves an ingenious avenue towards enhancing intermolecular interactions and provides significant implications for a better comprehensive understanding of the origin of their RTP and the inherent photophysical mechanism.  相似文献   

3.
《中国化学快报》2020,31(6):1402-1405
A systematic spectral analysis was presented for bishemicyanine dyes(Hsd and D2) and monohemicyanine dyes(Hs and DSMI).The bishemicyanine dyes displayed long emission wavelengths,large Stokes shifts,low background quantum yields in aqueous solutions and high sensitivity in viscous environments.Better understanding of the structure-property relationships could benefit the design of improved dyes.Computational studies on these dyes revealed the three conjugated forms of bishemicyanines are in equilibrium due to two positive charges and a branched bulk substituent.Bishemicyanines possessed obviously lower rotating energy barrier of C-C bond rotation compared to the monohemicyanine dyes.Moreover,the synergetic effects of the rotation about the φ_4 bond,φ_5 bond and φ_7 bond of the bishemicyanines(Hsd and D2) lead to lower fluorescence quantum yields in a free state and larger fluorescence quantum yield enhancements in viscous environment compared to that of monohemicyanine dyes(Hs and DSMI).The results demonstrate a foundation for interpretation of the behavior of the dyes,thus providing guidelines for future of new bishemicyanine fluorophores with specific applications.  相似文献   

4.
(aza-)BODIPY dyes (boron dipyrromethene dyes) are well-established fluorophores due to their large quantum yields, stability, and diversity, which led to promising applications including imaging techniques, sensors, organic (opto)electronic materials, or biomedical applications. Although the control of the optical properties in (aza-)BODIPY dyes by peripheral functional groups is well studied, we herein present a novel approach to modify the 12 π-electron core of the dipyrromethene scaffold. The replacement of two carbon atoms in the β-position of a BODIPY dye by two nitrogen atoms afforded a 14 π-electron system, which was termed BODIIM (boron diimidazolylmethene) in systematic analogy to the BODIPY dyes. Remarkably, the BODIIM dye was obtained with a BH2-rigidifying entity, which is currently elusive and highly sought after for the BODIPY dye class. DFT-Calculations confirm the [12+2] π-electron relationship between BODIPY and BODIIM and reveal a strong shape correlation between LUMO in the BODIPY and the HOMO of the BODIIM. The modification of the π-system leads to a dramatic shift of the optical properties, of which the fluorescent emission is most noteworthy and occurs at much larger Stokes shift, that is, ≈500 cm−1 in BODIPY versus >4170 cm−1 in BODIIM system in all solvents investigated. Nucleophilic reactivity was found at the meso-carbon atom in the formation of stable borane adducts with a significant shift of the fluorescent emission, and this behavior contrasts the reactivity of conventional BODIPY systems. In addition, the reverse decomplexation of the borane adducts was demonstrated in reactions with a representative N-heterocyclic carbene to retain the strongly fluorescent BODIIM compound, which suggests applications as fully reversible fluorescent switch.  相似文献   

5.
In this study, novel mono- and dipyridylvinyl boron dipyrromethene dyes are prepared to compare their photodynamic antimicrobial chemotherapy (PACT) activities against Staphylococcus aureus to the corresponding core dyes. Pyridylvinyl substitution at the 3- or 3,5-positions of a meso-4-bromophenylBODIPY core dye via a Knoevenagel reaction with an aromatic 2-bromopyridinecarboxaldehyde shifts the major BODIPY spectral band to longer wavelength. The extended π-conjugation red shifts the main spectral band into the 602–618 nm region in CHCl3, THF, ethanol and DMSO after monopyridylvinyl substitution and to 685–704 nm after dipyridylvinyl substitution. An enhancement of the population of the T1 state through the incorporation of iodine atoms at the 2,6-positions results in moderately high singlet oxygen quantum yields in DMSO. The π-extended dyes were found to have significantly lower PACT activities than the diiodinated core dye.  相似文献   

6.
In this paper, we report the preparation and red-light-emitting behavior of benzothiadiazole–tris(alkyloxy)phenylethene dyes. In solution, we observed an efficient red light emission with high fluorescence quantum yields (up to 0.78). With increase in solvent polarity, the emission bands shifted to longer wavelengths accompanied by a large Stokes shift of up to 152 nm. A moderate fluorescence quantum yield of 0.52 could be achieved even in the polar solvent dimethylformamide. Red light emission with good fluorescence quantum yields (up to 0.50) was also observed in the bulk solid, liquid, and film state.  相似文献   

7.
Achieving highly efficient phosphorescence in purely organic luminophors at room temperature remains a major challenge due to slow intersystem crossing (ISC) rates in combination with effective non‐radiative processes in those systems. Most room temperature phosphorescent (RTP) organic materials have O‐ or N‐lone pairs leading to low lying (n, π*) and (π, π*) excited states which accelerate kisc through El‐Sayed's rule. Herein, we report the first persistent RTP with lifetimes up to 0.5 s from simple triarylboranes which have no lone pairs. RTP is only observed in the crystalline state and in highly doped PMMA films which are indicative of aggregation induced emission (AIE). Detailed crystal structure analysis suggested that intermolecular interactions are important for efficient RTP. Furthermore, photophysical studies of the isolated molecules in a frozen glass, in combination with DFT/MRCI calculations, show that (σ, B p)→(π, B p) transitions accelerate the ISC process. This work provides a new approach for the design of RTP materials without (n, π*) transitions.  相似文献   

8.
The configuration of the lowest excited state of acenaphthenone, S1(π, π*) or T1(π, π*), depending on the solvent, dominates photoluminescence. The T1(n, π*) state in aprotic organic solvents is responsible for the phosphorescence of acenaphthenone. The wavelengths of the phosphorescence measured in benzene are 576 nm and 635 nm (vibronic) with 3.3 × 10?4 quantum efficiency. However, the S1(π, π*) state in protic solution which dominates the fluorescence emission depending upon acidity is the most distinctive feature of acenaphthenone. The wavelengths of the emissions are 446 nm under water solvation with 0.185 quantum efficiency and 538 nm with 0.097 quantum efficiency under high acidity. The emission at 446 nm is assigned from a H-bonded keto-form excited state, whereas the emission at 538 nm is probably due to the excited state of protonated keto-form. The pKa value in aqueous solution measured by diminution of fluorescence in basic solutions is 12.5 ± 0.4.  相似文献   

9.
Boron dipyrromethenes (BODIPYs) with bulky triphenylsilylphenyl(ethynyl) and triphenylsilylphenyl substituents on pyrrole sites were prepared via Hagihara-Sonogashira and Suzuki-Miyaura cross-coupling with ethynyl-terminated tetraphenylsilane and boronic acid-terminated tetraphenylsilane. The chromophores are designed to prevent intermolecular π-π stacking interaction and enhance fluorescence in the solid state. Single crystals of 1?a and 2?b for X-ray structural analysis were obtained, and weak π-π stacking interactions of the neighboring BODIPY molecules were observed. Spectroscopic properties of all of the dyes in various solvents and in films were investigated. Triphenylsilylphenyl-substituted BODIPYs generally show more pronounced increases in solid-state emission than triphenylsilylphenyl(ethynyl)-substituted BODIPYs. Although the simple BODIPYs do not exhibit any fluorescence in the solid state (Φ=0), arylsilyl-substituted BODIPYs exhibit weak to moderate solid-state fluorescence with quantum yields of 0.03, 0.07, 0.10, and 0.25. The structure-property relationships were analyzed on the basis of X-ray crystallography, optical spectroscopy, cyclic voltammetry, and theoretical calculations.  相似文献   

10.
A purely organic D-π-A-π-D type emitter showing thermally activated delayed fluorescence(TADF) and room temperature phosphorescence(RTP) was designed and synthesized by utilizing the benzophenone as an acceptor and the N-phenyl-2-napthylamine as a donor moiety.It exhibits considerable TADF character in doped PMMA film and room temperature phosphorescence with a long lifetime of 74 ms at466 nm in solid state.The devices with the configuration of ITO/Mo_2 O_3(4 nm)/mCP(30 nm)/mCP:x wt%NP2 BP/TmTyPB(60 nm)/LiF(1.5 nm)/AI(100 nm) were prepared by vacuum evaporation to explore their electroluminescent performance.Intere stingly,the non-doped device has obtained near-white emission with a fluorescence emission peak at 475 nm and a phosphore scence emission peak at 563 nm having the CIE coordinate of(0.23,0.32) and the maximum external quantum efficiency of 1.09%.  相似文献   

11.
《Chemical physics》2005,308(1-2):93-102
The absorption and emission spectroscopic behaviour of cyclometalated fac-tris(2-phenylpyridine) iridium(III) [Ir(ppy)3] is studied at room temperature. Liquid solutions, doped films, and neat films are investigated. The absorption cross-section spectra including singlet–triplet absorption, the triplet–singlet stimulated emission cross-section spectra, the phosphorescence quantum distributions, the phosphorescence quantum yields and the phosphorescence signal decays are determined. In neat films fluorescence self-quenching occurs, in diluted solid solution (polystyrene and dicarbazole-biphenyl films) as well as deaerated liquid solution (toluene) high phosphorescence quantum yields are obtained, and in air-saturated liquid solutions (chloroform, toluene, tetrahydrofuran) the phosphorescence efficiency is reduced by triplet oxygen quenching. At intense short-pulse laser excitation the phosphorescence lifetime is shortened by triplet–triplet annihilation. No amplification of spontaneous emission in the phosphorescence spectral region was observed indicating higher excited-state absorption than stimulated emission.  相似文献   

12.
A D‐A‐D′ type pure organic molecule, named ODFRCZ, has unique triple‐emission character covering fluorescence, phosphorescence, and delayed fluorescence (DF). The phosphorescence of ODFRCZ has a rather long lifetime of about 350 ms at room temperature. One dimer of ODFRCZ with enhanced parallel molecular packing acts more effectively to prompt ISC processes, which further generates room‐temperature phosphorescence (RTP), owing to the larger transition dipole moment and closer energy level between S1 and Tn. ODFRCZ is a rare example of an organic RTP molecule that shows dual‐stimuli responsiveness of dual‐mode mechanochromism (fluorescence red‐shift and RTP/DF on‐off switch) and reversible crystal‐state photochromism. This work may broaden the knowledge for stimuli‐responsive RTP organic molecules and lay the foundation for their wide‐scale applications.  相似文献   

13.
A D‐A‐D′ type pure organic molecule, named ODFRCZ, has unique triple‐emission character covering fluorescence, phosphorescence, and delayed fluorescence (DF). The phosphorescence of ODFRCZ has a rather long lifetime of about 350 ms at room temperature. One dimer of ODFRCZ with enhanced parallel molecular packing acts more effectively to prompt ISC processes, which further generates room‐temperature phosphorescence (RTP), owing to the larger transition dipole moment and closer energy level between S1 and Tn. ODFRCZ is a rare example of an organic RTP molecule that shows dual‐stimuli responsiveness of dual‐mode mechanochromism (fluorescence red‐shift and RTP/DF on‐off switch) and reversible crystal‐state photochromism. This work may broaden the knowledge for stimuli‐responsive RTP organic molecules and lay the foundation for their wide‐scale applications.  相似文献   

14.
The design and development of organic luminophores that exhibit efficient ultraviolet (UV) fluorescence in the solid state remains underexplored. Here, we report that 1,4-dialkenyl-2,5-dialkoxybenzenes and 1,4-dialkenyl-2,5-disiloxybenzenes act as such UV-emissive fluorophores. The dialkenyldioxybenzenes were readily prepared in three steps from 2,5-dimethoxy-1,4-diacetylbenzene or 2,5-dimethoxy-1,4-diformylbenzene via two to four steps from 1,4-bis(diethoxyphosphonylmethyl)-2,5-dimethoxybenzene. The dialkenyldioxybenzenes emit UV light in solution (λem=350–387 nm) and in the solid state (λem=328–388 nm). In addition, the quantum yields in the solid state were generally higher than those in solution. In particular, the adamantylidene-substituted benzenes fluoresced in the UV region with high quantum yields (Φ=0.37–0.55) in the solid state. Thin films of poly(methyl methacrylate) doped with the adamantylidene-substituted benzenes also exhibited UV emission with good efficiency (Φ=0.27–0.45). Density functional theory calculations revealed that the optical excitation of the dialkenyldimethoxybenzenes involves intramolecular charge-transfer from the ether oxygen atoms to the twisted alkenyl-benzene-alkenyl moiety, whereas the dialkenylbis(triphenylsiloxy)benzenes were optically excited through intramolecular charge-transfer from the oxygen atoms and twisted π-system to the phenyl-Si moieties of each triphenylsilyl group.  相似文献   

15.
The photophysical behavior of two xanthene dyes, Eosin Y and Phloxine B, included in microcrystalline cellulose particles is studied in a wide concentration range, with emphasis on the effect of dye concentration on fluorescence and triplet quantum yields. Absolute fluorescence quantum yields in the solid‐state were determined by means of diffuse reflectance and steady‐state fluorescence measurements, whereas absolute triplet quantum yields were obtained by laser‐induced optoacoustic spectroscopy and their dependence on dye concentration was confirmed by diffuse reflectance laser flash photolysis and time‐resolved phosphorescence measurements. When both quantum yields are corrected for reabsorption and reemission of radiation, Φ F values decrease strongly on increasing dye concentration, while a less pronounced decay is observed for Φ T. Fluorescence concentration quenching is attributed to the formation of dye aggregates or virtual traps resulting from molecular crowding. Dimeric traps are however able to generate triplet states. A mechanism based on the intermediacy of charge‐transfer states is proposed and discussed. Calculation of parameters for photoinduced electron transfer between dye molecules within the traps evidences the feasibility of the proposed mechanism. Results demonstrate that photoactive energy traps, capable of yielding dye triplet states, can be formed even in highly‐concentrated systems with random dye distributions.  相似文献   

16.
Benzene is the simplest aromatic hydrocarbon with a six‐membered ring. It is one of the most basic structural units for the construction of π conjugated systems, which are widely used as fluorescent dyes and other luminescent materials for imaging applications and displays because of their enhanced spectroscopic signal. Presented herein is 2,5‐bis(methylsulfonyl)‐1,4‐diaminobenzene as a novel architecture for green fluorophores, established based on an effective push–pull system supported by intramolecular hydrogen bonding. This compound demonstrates high fluorescence emission and photostability and is solid‐state emissive, water‐soluble, and solvent‐ and pH‐independent with quantum yields of Φ=0.67 and Stokes shift of 140 nm (in water). This architecture is a significant departure from conventional extended π‐conjugated systems based on a flat and rigid molecular design and provides a minimum requirement for green fluorophores comprising a single benzene ring.  相似文献   

17.
The synthesis, structural, and photophysical properties of a new series of original dyes based on 2‐(2′‐hydroxybenzofuran)benzoxazole (HBBO) is reported. Upon photoexcitation, these dyes exhibit intense dual fluorescence with contribution from the enol (E*) and the keto (K*) emission, with K* being formed through excited‐state intramolecular proton transfer (ESIPT). We show that the ratio of emission intensity E*/K* can be fine‐tuned by judiciously decorating the molecular core with electron‐donating or ‐attracting substituents. Push–pull dyes 9 and 10 functionalized by a strong donor (nNBu2) and a strong acceptor group (CF3 and CN, respectively) exhibit intense dual emission, particularly in apolar solvents such as cyclohexane in which the maximum wavelength of the two bands is the more strongly separated. Moreover, all dyes exhibit strong solid‐state dual emission in a KBr matrix and polymer films with enhanced quantum yields reaching up to 54 %. A wise selection of substituents led to white emission both in solution and in the solid state. Finally, these experimental results were analyzed by time‐dependent density functional theory (TD‐DFT) calculations, which confirm that, on the one hand, only E* and K* emission are present (no rotamer) and, on the other hand, the relative free energies of the two tautomers in the excited state guide the ratio of the E*/K* emission intensities.  相似文献   

18.
Benzene is the simplest aromatic hydrocarbon with a six‐membered ring. It is one of the most basic structural units for the construction of π conjugated systems, which are widely used as fluorescent dyes and other luminescent materials for imaging applications and displays because of their enhanced spectroscopic signal. Presented herein is 2,5‐bis(methylsulfonyl)‐1,4‐diaminobenzene as a novel architecture for green fluorophores, established based on an effective push–pull system supported by intramolecular hydrogen bonding. This compound demonstrates high fluorescence emission and photostability and is solid‐state emissive, water‐soluble, and solvent‐ and pH‐independent with quantum yields of Φ=0.67 and Stokes shift of 140 nm (in water). This architecture is a significant departure from conventional extended π‐conjugated systems based on a flat and rigid molecular design and provides a minimum requirement for green fluorophores comprising a single benzene ring.  相似文献   

19.
A series of hemicyanine derivatives are excellent fluorescent viscosity sensors in live cells and in imaging of living tissues due to their low quantum yields in solution but large fluorescence enhancements in viscous environments. Herein, three carbazole‐based hemicyanine dyes with different heterocycles are studied. They have different background quantum yields, and hence different sensitivities to viscosity detection, large Stokes shifts, and high sensitivity. Better understanding of the structure–property relationships for viscosity sensitivity could benefit the design of improved dyes. Computational studies on these dyes reveal the mechanism of viscosity sensitivity of fluorescent molecular rotors and the nature of the difference in viscosity sensitivity of the three dyes. The results show that the greatly raised HOMO and greatly lowered LUMO in the S1 state compared with the S0 state are responsible for the large Stokes shift of the three dyes. The heterocyclic moieties have the primary influence on the LUMO levels of the three hemicyanine dyes. Rotation about the C? C bond adjacent to the carbazole moiety of the three dyes drives the molecule toward a small energy gap between the ground state and the first excited state, which causes mainly nonradiative deactivation. The oscillator strengths in the lowest singlet excited state drop rapidly with increasing rotation between 0 and 95°, which leads to a dark state for these dyes when fully twisted at 95°. We draw a mechanistic picture at the molecular level to illustrate how these dyes work as viscosity‐sensitive fluorescent probes. The activation barriers and energy gaps of C? C bond rotation strongly depend on the choice of heterocycle, which plays a major role in reducing fluorescence quantum yield in the free state and provides high sensitivity to viscosity detection in viscous environments for the carbazole‐based hemicyanine dyes.  相似文献   

20.
RutheniumII complexes bearing three axially chiral bipyridyl ligands were synthesized as a new family of chiral complex dyes, and Δ-(S)- and Λ-(S)-diastereomers were obtained. The X-ray crystal structure analyses, spectroscopy, and DFT calculations suggested that all the bipyridyls maintained chirality in both the ground and excited states, and the Δ-(S)- and Λ-(S)-isomers are the matched (more relaxed) and mismatched (more constrained) pairs, respectively. The mismatched Λ-(S)-isomer exhibited red circularly polarized phosphorescence (CPP) both in solution and in the solid state. The solution state CPP is the most intense of ruthenium complexes, while the solid state CPP is the first example of them. It is supposed that, for the Λ-(S)-isomer, the six cumulative CH/π interactions suppress further distortion in the T1 state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号