首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 124 毫秒
1.
A major challenge in supramolecular polymerization is controlling the stability of the polymers formed, that is, controlling the rate of monomer exchange in the equilibrium between monomer and polymer. The exchange dynamics of supramolecular polymers based on benzene‐1,3,5‐tricarboxamide (BTA) can be regulated by copolymerizing molecules with dendronized (dBTA) and linear (nBTA) ethylene glycol‐based water‐soluble side chains. Whereas nBTAs form long nanofibers in water, dBTAs do not polymerize, forming instead small spherical aggregates. The copolymerization of the two BTAs results in long nanofibers. The exchange dynamics of both the BTA monomers in the copolymer are significantly slowed down in the mixed systems, leading to a more stable copolymer, while the morphology and spectroscopic signature of the copolymers are identical to that of nBTA homopolymer. This copolymerization is the supramolecular counterpart of styrene/ maleic anhydride copolymerization.  相似文献   

2.
A comparative investigation of the chiral amplification features of a series of three families of C3-symmetric tricarboxamides, 1,3,5-triphenylbenzenetricarboxamides (TPBAs), benzenetricarboxamides (BTAs) and oligo(phenylene ethynylene) tricarboxamides (OPE-TAs), is here reported. As previously observed for BTAs and OPE-TAs, a similar dichroic response is obtained for TPBAs decorated with one, two or three chiral side chains bearing stereogenic centers, thus confirming the efficient transfer of point chirality to the supramolecular helical aggregates. Unlike BTAs and OPE-TAs, the chiral amplification ability of TPBAs in majority rules experiments shows a negligible dependence on the number of chiral centers per monomeric unit, and stands the largest among the series of tricarboxamides. Detailed experimental and theoretical studies demonstrate that the rotation angle between the TPBA units in the helical stack is intermediate to that observed for BTAs and OPE-TAs. This feature strongly conditions the steric interactions between vicinal molecules in the stack and the final chiral amplification outcome. Furthermore, theoretical calculations show that achiral side chains favor the interdigitation of the helical aggregates and thereby the formation of bundle superstructures.  相似文献   

3.
N‐Centred benzene‐1,3,5‐tricarboxamides (N‐BTAs) composed of chiral and achiral alkyl substituents were synthesised and their solid‐state behaviour and self‐assembly in dilute alkane solutions were investigated. A combination of differential scanning calorimetry (DSC), polarisation optical microscopy (POM) and X‐ray diffraction revealed that the chiral N‐BTA derivatives with branched 3,7‐dimethyloctanoyl chains were liquid crystalline and the mesophase was assigned as Colho. In contrast, N‐BTA derivatives with linear tetradecanoyl or octanoyl chains lacked a mesophase and were obtained as crystalline compounds. Variable‐temperature infrared spectroscopy showed the presence of threefold, intermolecular hydrogen bonding between neighbouring molecules in the mesophase of the chiral N‐BTAs. In the crystalline state at room temperature a more complicated packing between the molecules was observed. Ultraviolet and circular dichroism spectroscopy on dilute solutions of N‐BTAs revealed a cooperative self‐assembly behaviour of the N‐BTA molecules into supramolecular polymers with preferred helicity when chiral alkyl chains were present. Both the sergeants‐and‐soldiers as well as the majority‐rules principles were operative in stacks of N‐BTAs. In fact, the self‐assembly of N‐BTAs resembles closely that of their carbonyl (C?O)‐centred counterparts, with the exception that aggregation is weaker and amplification of chirality is less pronounced. The differences in the self‐assembly of N‐ and C?O‐BTAs were analysed by density functional theory (DFT) calculations. These reveal a substantially lower interaction energy between the monomeric units in the supramolecular polymers of N‐BTAs. The lower interaction energy is due to the higher energy penalty for rotation around the Ph? NH bond compared to the Ph? CO bond and the diminished magnitude of dipole–dipole interactions. Finally, we observed that mixed stacks are formed in dilute solution when mixing N‐BTAs and C?O BTAs.  相似文献   

4.
The performance of opto‐electronic devices built from low‐molecular‐weight dye molecules depends crucially on the stacking properties and the resulting coupling of the chromophoric systems. Herein we investigate the influence of H‐bonding amide and bulky substituents on the π‐stacking of pyrene‐containing small molecules in dilute solution, as supramolecular aggregates, and in the solid state. A set of four pyrene derivatives was synthesized in which benzene or 4‐tert‐butyl benzene was linked to the pyrene unit either through an ester or an amide. All four molecules form supramolecular H‐aggregates in THF solution at concentrations above 1×10?4 mol L?1. These aggregates were transferred on a solid support and crystallized. We investigate: the excimer formation rates within supramolecular aggregates; the formation of H‐bonds as well as the optical changes during the transition from the amorphous to the crystalline state; and the excimer to monomer fluorescence ratio in crystalline films at low temperatures. We reveal that in solution supramolecular aggregation depends predominantly on the pyrene chromophores. In the crystalline state, however, the pyrene stacking can be controlled gradually by H‐bonding and steric effects. These results are further confirmed by molecular modeling. This work bears fundamental information for tailoring the solid state of functional optoelectronic materials.  相似文献   

5.
采用原子转移聚合方法合成了聚N-异丙基丙烯酰胺和聚醚树技体的不对嵌段共聚物Dendr.PE-PNI-PAM。实验结果表明Dendr.PE-PNIPAM分子在水中能通过疏水缔合作用形成具有双分子膜结构的超分子聚集体。临界缔合浓度(CAC)、聚集体的大小及形貌对树枝体的代数具有明显的依赖关系。该聚集体对温度刺激具有响应性,并在人体体温温度(37.5℃)发生相转变。在高于相转变温度时,Dendr.PE-PNIPAM分子形成管状、带状等多重形态的超级结构的聚集体。  相似文献   

6.
Novel, optically active, stereoregular poly(phenylacetylene)s bearing the bulky fullerene as the pendant were synthesized by copolymerization of an achiral phenylacetylene bearing a [60]fullerene unit with optically active phenylacetylene components in the presence of a rhodium catalyst. The C60-bound phenylacetylene was prepared by treatment of C60 with N-(4-ethynylbenzyl)glycine in a Prato reaction. The obtained copolymers exhibited induced circular dichroism (ICD) in solution both in the main-chain region and in the achiral fullerene chromophoric region, although their ICD intensities were highly dependent on the structures of the optically active phenylacetylenes and the solution temperature. These results indicate that the optically active copolymers form one-handed helical structures and that the pendant achiral fullerene groups are arranged in helical arrays with a predominant screw sense along the polymer backbone. The structures and morphology of the copolymers on solid substrates were also investigated by atomic force microscopy.  相似文献   

7.
To further reveal the factors governing the supramolecular assembly of beta-cyclodextrin (beta-CD) inclusion complexes, two aggregates (1 and 2) were prepared from the inclusion complexes of beta-CD with 4-hydroxyazobenzene and 4-aminoazobenzene, respectively, and their binding behavior were investigated by means of X-ray analysis, UV-vis, NMR, and circular dichroism spectra in both solution and the solid state. The obtained results indicated that the beta-CD/4-hydroxyazobenzene complex 1 could form head-to-head dimers (triclinic system, space group P1) in the solid state, which were further self-assembled to a linear supramolecular architecture by the intra- and interdimer hydrogen bond interactions as well as the intradimer pi-pi interactions. However, when the included guest 4-hydroxyazobenzene was switched to a 4-aminoazobenzene, the resultant beta-CD/4-aminoazobenzene complex 2 (monoclinic system, space group P2(1)) could be self-assembled to a wave-type supramolecular aggregate under similar conditions. Furthermore, the combination of crystallographic and spectral investigations jointly revealed the inclusion complexation geometry of beta-CD with 4-hydroxyazobenzene and 4-aminoazobenzene in both solution and the solid state, which demonstrated that the disparity of substituents in the azobenzenes played an important role in the inclusion complexation and molecular assembly, affecting not only the structural features of aggregates but also the binding abilities of azobenzenes with beta-CD.  相似文献   

8.
Incorporation of 2,2‐bis[4‐(2‐hydroxyethoxy)phenyl]propane (Dianol 220®) into poly(butylene terephthalate) (PBT) via solid‐state copolymerization (SSP) showed that Dianol, besides being the reactant, also acts as a swelling agent for rigid amorphous PBT chain segments. Being swollen, these amorphous chain segments become sufficiently mobile to contribute to the SSP process. The thermal behavior of the resulting copolyesters is comparable with melt copolymerized copolymers, although having a different chemical microstructure. The main reason is a full miscibility in the melt of unmodified PBT chain segments and modified chain segments, which eliminates the advantages of a blocky microstructure for the SSP copolyesters. However, incorporation of 2,2′‐biphenyldimethanol (BDM) into PBT resulted in a higher crystallization temperature compared with PBT–Dianol copolymers of equal composition. Preordering of polymer chains in the melt by incorporating rigid, phase separating BDM‐moieties, preferably via SSP to obtain a non‐random distribution, may be the origin of the enhanced crystallization temperature. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1203–1217, 2008  相似文献   

9.
The synthesis of a series of triangular-shaped tricarboxamides endowed with three picoline or nicotine units (compounds 2 and 3 , respectively) or just one nicotine unit (compound 4 ) is reported, and their self-assembling features investigated. The pyridine rings make compounds 2 – 4 electronically complementary with our previously reported oligo(phenylene ethynylene)tricarboxamides (OPE-TA) 1 to form supramolecular copolymers. C3-symmetric tricarboxamide 2 forms highly stable intramolecular five-membered pseudocycles that impede its supramolecular polymerization into poly-2 and the co-assembly with 1 to yield copolymer poly-1-co-2 . On the other hand, C3-symmetric tricarboxamide 3 readily forms poly-3 with great stability but unable to form helical supramolecular polymers despite the presence of the peripheral chiral side chains. The copolymer poly-1-co-3 can only be obtained by a previous complete disassembly of the constitutive homopolymers in CHCl3. Helical poly-1-co-3 arises in a process involving the transfer of the helicity from racemic poly-1 to poly-3 , and the amplification of asymmetry from chiral poly-3 to poly-1 . Importantly, C2v-symmetric 4 , endowed with only one nicotinamide moiety and three chiral side chains, self-assembles into a P-type helical supramolecular polymer ( poly-4 ) in a thermodynamically controlled cooperative process. The combination of poly-1 and poly-4 generates chiral supramolecular copolymer poly-1-co-4 , whose blocky microstructure has been investigated by applying the previously reported supramolecular copolymerization model.  相似文献   

10.
In spite of their apparently similar structures, fluorocarbons (FC) and hydrocarbons (HC) possess very different properties, and their mixtures produce experimental evidences for the formation of microdomains in the solid and in the liquid state as well.Some theoretical treatments have been proposed to explain the surprising and highly non-ideal phase separation behavior of fluorocarbons/hydrocarbons mixtures, but none of them can exhaustively offer a general and realistic framework in agreement with the experimental results. The addition of semifluorinated copolymers to FC/HC mixtures enhances their mutual solubility, and leads to the formation of supramolecular structures in the liquid state.  相似文献   

11.
Three new topology-varied rod-coil block copolymers, comprising the same oligo(p-phenyleneethynylene) (OPE) rod components and the same coil components, were synthesized by atom-transfer radical polymerization. Their photophysical properties were systematically studied and compared in consideration of their solid-state structures and self-assembly abilities. These copolymers have similar intrinsic photophysical properties to the OPE rods, as reflected in dilute solution. However, their photophysical properties in the solid state are manipulated to be dissimilar by supramolecular organization. Wide-angle X-ray diffraction (WAXD) and atomic force microscopy (AFM) data demonstrate that these copolymers possess different self-assembly abilities due to the molecular-architecture-dependent pi-pi interactions of the rods. Hence, the aggregates in the solid state are formed with a different mechanism for these copolymers, bringing about the discrepancy in the solid-state luminescent properties.  相似文献   

12.
The nature of the interactions between 1,3-dialkylimidazolium cations and noncoordinating anions such as tetrafluoroborate, hexafluorophosphate, and tetraphenylborate has been studied in the solid state by X-ray diffraction analysis and in solution by (1)H NMR spectroscopy, conductivity, and microcalorimetry. In the solid state, these compounds show an extended network of hydrogen-bonded cations and anions in which one cation is surrounded by at least three anions and one anion is surrounded by at least three imidazolium cations. In the pure form, imidazolium salts are better described as polymeric supramolecules of the type {[(DAI)(3)(X)](2+)[(DAI)(X)(3)](2-)}(n) (where DAI is the dialkylimidazolium cation and X is the anion) formed through hydrogen bonds of the imidazolium cation with the anion. In solution, this supramolecular structural organization is maintained to a great extent, at least in solvents of low dielectric constant, indicating that mixtures of imidazolium ionic liquids with other molecules can be considered as nanostructured materials. This model is very useful for the rationalization of the majority of the unusual behavior of the ionic liquids.  相似文献   

13.
The correlation between molecular structure and mechanism of supramolecular polymerizations is a topic of great interest, with a special focus on the pathway complexity of porphyrin assemblies. Their cooperative polymerization typically yields highly ordered, long 1D polymers and is driven by a combination of π-stacking due to solvophobic effects and hydrogen bonding interactions. Subtle changes in molecular structure, however, have significant influence on the cooperativity factor and yield different aggregate types (J- versus H-aggregates) of different lengths. In this study, the influence of amide connectivity on the self-assembly behavior of porphyrin-based supramolecular monomers was investigated. While in nonpolar solvents, C=O centered monomers readily assemble into helical supramolecular polymers via a cooperative mechanism, their NH centered counterparts form short, non-helical J-type aggregates via an isodesmic pathway. A combination of spectroscopy and density functional theory modelling sheds light on the molecular origins causing this stunning difference in assembly properties and demonstrates the importance of molecular connectivity in the design of supramolecular systems. Finally, their mutual interference in copolymerization experiments is presented.  相似文献   

14.
Copolymerizations of substituted acetylenes have been intensively studied in solution polymerization for constructing chirally helical polymers, while emulsion copolymerizations of the kind of monomers have been only scarcely reported. In the present study, chiral substituted acetylene monomer containing cholic acid group underwent emulsion copolymerizations with an achiral acetylenic monomer in the presence of rhodium catalyst, providing optically active helical copolymer nanoparticles. Synergistic effects were found in the resulting helical copolymers, enabling one certain copolymer to show the maximum CD signal intensity. Moreover, the helicity of the helical copolymers in nanoparticle state was opposite to that in solution state. This is the first demonstration that synergistic effects and helicity inversion simultaneously occurred in helical copolymers prepared by emulsion copolymerization process. To deepen the understanding of the unique phenomena, corresponding solution copolymerization and emulsification process were also investigated. Different from “Sergeant and Soldiers rule” approach, the present study provides a new strategy for preparing chirally helical polymer particles by making full use of achiral monomers. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1679–1685  相似文献   

15.
Eight Schiff bases, derived from tris(2-aminoethyl)amine and some aromatic aldehydes have been investigated by heteronuclear NMR methods in solution and in the solid state. Six of those compounds can form intramolecular hydrogen bonds and two remaining imines which do not have hydroxyl substituent in position 2 cannot form such bonds and were chosen as a model compounds for nonbonded structure. The tautomeric equilibrium position of investigated compounds were estimated on the base of nitrogen chemical shifts and nitrogen-proton one bond coupling constants when available. In solution for each compound in all temperatures applied, single symmetrical dynamic averaged structures were found but in the solid state in a few cases mixtures of several nonequivalent or nonsymmetrical structures were observed. Generally at low temperature the –NH– form is more abundant then at room temperature. Similarly in the solid state the proton transfer from oxygen to nitrogen site is more effective in comparison with the solution, except for the 9-formyl-8-hydroxyjulolidine derivative for which different behavior was found.  相似文献   

16.
A novel N-acylamino acid surfactant, sodium N-(4-dodecyloxybenzoyl)-L-valinate (SDLV), has been synthesized. The aggregation behavior of the surfactant in aqueous solution has been studied by surface tension, fluorescence probe, microscopy, and dynamic light scattering (DLS) techniques. The amphiphile has a very low critical aggregation concentration (cac). These studies have suggested formation of large bilayer structures in water. The mean apparent hydrodynamic radius, RH, of the self-assemblies in dilute aqueous solution obtained from DLS measurements confirmed formation of large aggregates. The FT-IR spectra of the amphiphile have indicated strong intermolecular amide hydrogen bonding in the self-assemblies in aqueous solution. The microenvironment of the fluorescence probes is highly nonpolar and viscous in nature. The circular dichroism (CD) spectra of SDLV were recorded in water and in a 1:1 water-methanol mixture. The CD spectra have indicated the presence of chiral aggregates in aqueous solution above the cac. The microstructure of the aggregates has been studied by use of optical and transmission electron microscopy. Both types of micrographs have shown the presence of a variety of morphologies including giant spherical vesicles, tubules, twisted ribbons, and helical strands in aqueous solutions.  相似文献   

17.
A series of indazoles substituted at the N-1 and N-2 positions with ester-containing side chains -(CH2)(n)CO2R of different lengths (n = 0-6, 9, 10) are described.Nucleophilic substitution reactions on halo esters (X(CH2)(n)CO2R) by 1H-indazole inalkaline solution lead to mixtures of N-1 and N-2 isomers, in which the N-1 isomer predominates. Basic hydrolysis of the ester derivatives allowed the synthesis of the corresponding indazole carboxylic acids. All compounds were fully characterised by multinuclear NMR and IR spectroscopies, MS spectrometry and elemental analysis; the NMR spectroscopic data were used for structural assignment of the N-1 and N-2 isomers.The molecular structure of indazol-2-yl-acetic acid (5b) was determined by X-ray diffraction, which shows a supramolecular architecture involving O2-H...N1 intermolecular hydrogen bonds.  相似文献   

18.
We have investigated the folding and assembly behavior of a cystine-based dimeric diamide bearing pyrene units and solubilizing alkyl chains. In low-polarity solvents, it forms a 14-membered ring through double intramolecular hydrogen bonds between two diamide units. The spectroscopic studies revealed that the folded state is thermodynamically unstable and eventually transforms into more energetically stable helical supramolecular polymers that show an enhanced chiral excitonic coupling between the transition dipoles of the pyrene units. Importantly, compared to an alanine-based monomeric diamide, the dimeric diamide exhibits a superior kinetic stability in the metastable folded state, as well as an increased thermodynamic stability in the aggregated state. Accordingly, the initiation of supramolecular polymerization can be regulated using a seeding method even under microfluidic mixing conditions. Furthermore, taking advantage of a self-sorting behavior observed in a mixture of l -cysteine- and d -cysteine-based dimeric diamides, a two-step supramolecular polymerization was achieved by stepwise addition of the corresponding seeds.  相似文献   

19.
A novel core–shell structured columnar liquid crystal composed of a donor‐acceptor dyad of tetraphenoxy perylene bisimide (PBI), decorated with four bithiophene units on the periphery, was synthesized. This molecule self‐assembles in solution into helical J‐aggregates guided by π–π interactions and hydrogen bonds which organize into a liquid‐crystalline (LC) columnar hexagonal domain in the solid state. Donor and acceptor moieties exhibit contrasting exciton coupling behavior with the PBIs’ (J‐type) transition dipole moment parallel and the bithiophene side arms’ (H‐type) perpendicular to the columnar axis. The dyad shows efficient energy and electron transfer in solution as well as in the solid state. The synergy of photoinduced electron transfer (PET) and charge transport along the narcissistically self‐assembled core–shell structure enables the implementation of the dye in two‐contact photoconductivity devices giving rise to a 20‐fold increased photoresponse compared to a reference dye without bithiophene donor moieties.  相似文献   

20.
Investigation of the transmission of magnetic interactions through hydrogen bonds has been carried out for two different benzoic acid derivatives which bear either a tert-butyl nitroxide (NOA) or a poly(chloro)triphenylmethyl (PTMA) radical moiety. In the solid state, both radical acids formed dimer aggregates by the complementary association of two carboxylic groups though hydrogen bonding. This association ensured that atoms with most spin density are separated from one another by more than 15 A. Thus, no competing through-space magnetic exchange interactions are expected in these dimers and, hence, they provide good models to investigate whether noncovalent hydrogen bonds play a role in the long-range transmission of magnetic interactions. The nature of the magnetic exchange interaction and their strengths within similar dimer aggregates in solution was assessed by electron spin resonance (ESR) spectroscopy. In the case of radical NOA, low-temperature ESR experiments showed a weak ferromagnetic interaction between the two radicals in the dimer aggregates (which have the same geometry as in the solid state). In contrast, the corresponding solution ESR study performed with radical PTMA did not lead to any conclusive results, as aggregates were formed by noncovalent interactions other than hydrogen bonds. However, the bulkiness of the poly(chloro)triphenylmethyl radical prevented interdimer contacts in the solid state between regions of high spin density. Hence, solid-state measurements of the alpha phase of PTMA radical provided evidence of the intradimer interaction to confirm the transmission of a weak ferromagnetic interaction through the carboxylic acid bridges, as found for the NOA radical. Moreover, crystallization of the PTMA radical in presence of ethanol to form the beta phase of PTMA radical prevented the dimer formation; this resulted in the suppression of this interaction and provides further evidence of the magnetic exchange mechanism through noncovalent hydrogen bonds at long distances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号