首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lewis base adducts of tetra‐alkoxy diboron compounds, in particular bis(pinacolato)diboron (B2pin2), have been proposed as the active source of nucleophilic boryl species in metal‐free borylation reactions. We report the isolation and detailed structural characterization (by solid‐state and solution NMR spectroscopy and X‐ray crystallography) of a series of anionic adducts of B2pin2 with hard Lewis bases, such as alkoxides and fluoride. The study was extended to alternative Lewis bases, such as acetate, and other diboron reagents. The B(sp2)–B(sp3) adducts exhibit two distinct boron environments in the solid‐state and solution NMR spectra, except for [(4‐tBuC6H4O)B2pin2]?, which shows rapid site exchange in solution. DFT calculations were performed to analyze the stability of the adducts with respect to dissociation. Stoichiometric reaction of the isolated adducts with two representative series of organic electrophiles—namely, aryl halides and diazonium salts—demonstrate the relative reactivities of the anionic diboron compounds as nucleophilic boryl anion sources.  相似文献   

2.
Pd‐catalyzed intramolecular asymmetric carbopalladation of N ‐aryl acrylamides followed by reduction of C(sp3)‐Pd intermediate using diboron–water as a hydride source afforded enantioenriched 3,3‐disubstituted oxindoles in high yields and enantioselectivities. When heavy water was used as a deuterium donor in combination with bis(catecholato)diboron (Cat2B2), deuterium was incorporated into the products with high synthetic efficiency. The ligand determined both the enantioselectivity of the reaction and the reaction pathways, thereby affording either hydroarylation (reductive Heck) or carboborylation products.  相似文献   

3.
The possibility to form new C–B bonds with aziridines using diboron derivatives continues to be a particularly challenging field in view of the direct preparation of functionalized β-aminoboronates, which are important compounds in drug discovery, being a bioisostere of β-aminoacids. We now report experimental and computational data that allows the individuation of the structural requisites and of reaction conditions necessary to open alkyl aziridines using bis(pinacolate)diboron (B2pin2) in a regioselective nucleophilic addition reaction under copper catalysis.  相似文献   

4.
An iron‐catalyzed diboration reaction of alkynes with bis(pinacolato)diboron (B2pin2) and external borating agents (MeOB(OR)2) affords diverse symmetrical or unsymmetrical cis‐1,2‐diborylalkenes. The simple protocol for the diboration reaction can be extended to the iron‐catalyzed carboboration of alkynes with primary and, unprecedentedly, secondary alkyl halides, affording various tetrasubstituted monoborylalkenes in a highly stereoselective manner. DFT calculations indicate that a boryliron intermediate adds across the triple bond of an alkyne to afford an alkenyliron intermediate, which can react with the external trapping agents, borates and alkyl halides. In situ trapping experiments support the intermediacy of the alkenyl iron species using radical probe stubstrates.  相似文献   

5.
We report the isolation and detailed structural characterization, by solid‐state and solution NMR spectroscopy, of the neutral mono‐ and bis‐NHC adducts of bis(catecholato)diboron (B2cat2). The bis‐NHC adduct undergoes thermally induced rearrangement, forming a six‐membered ‐B?C?N?C?C‐N‐heterocyclic ring via C?N bond cleavage and ring expansion of the NHC, whereas the mono‐NHC adduct is stable. Bis(neopentylglycolato)diboron (B2neop2) is much more reactive than B2cat2 giving a ring expanded product at room temperature, demonstrating that ring expansion of NHCs can be a very facile process with significant implications for their use in catalysis.  相似文献   

6.
A new process has been developed for the iridium(I)‐catalyzed vinylic C?H borylation of α,β‐unsaturated esters with bis(pinacolato)diboron (B2pin2). These reactions proceeded in octane at temperatures in the range of 80–120 °C to afford the corresponding alkenylboronic compounds in high yields with excellent regio‐ and stereoselectivities. The presence of an aryl ester led to significant improvements in the yields of the acyclic alkenylboronates. Crossover experiments involving deuterated substrates as well as a mixture of stereoisomers confirmed that this reaction proceeds via a 1,4‐addition/β‐hydride elimination mechanism. Notably, this reaction was also used to develop a one‐pot borylation/Suzuki–Miyaura cross‐coupling procedure.  相似文献   

7.
An intriguing aerobic oxidation of alkynes through copper catalysis is described, in which bis(pinacolato)diboron (B2pin2) played a dominant intermediary role in the formation 1,2-diketones. This novel protocol, which can be performed at room temperature, is versatile for various substituted alkynes, including diarylalkynes and arylalkylalkynes. The mechanism of this reaction was preliminarily investigated by control experiments.  相似文献   

8.
We report herein the catalytic triboration of terminal alkynes with B2pin2 (bis(pinacolato)diboron) using readily available Cu(OAc)2 and PnBu3. Various 1,1,2‐triborylalkenes, a class of compounds that have been demonstrated to be potential matrix metalloproteinase (MMP‐2) inhibitors, were obtained directly in moderate to good yields. The process features mild reaction conditions, a broad substrate scope, and good functional group tolerance. This copper‐catalyzed reaction can be conducted on a gram scale to produce the corresponding 1,1,2‐triborylalkenes in modest yields. The utility of these products was demonstrated by further transformations of the C?B bonds to prepare gem‐dihaloborylalkenes (F, Cl, Br), monohaloborylalkenes (Cl, Br), and trans‐diaryldiborylalkenes, which serve as important synthons and have previously been challenging to prepare.  相似文献   

9.
Diboron compounds with a B−B bond, discovered with B2Cl4 a century ago, have been developed only since the turn of this century for catalyzed borylation reactions, mostly with the well-know reagent bis(binacolato)diboron, (B2pin2). On the other hand, chemistry of tetrahydroxydiboron (THDB), also named bis-boric acid, is relatively underdeveloped. In this review, the properties of THDB as a borylation, reductant (including transfer hydrogenation), catalyst, source of radicals and generator of H2 from water upon hydrolysis are summarized.  相似文献   

10.
A series of 22 new bis(phosphine), bis(carbene), and bis(isonitrile) tetrahalodiborane adducts has been synthesized, either by direct adduct formation with highly sensitive B2X4 precursors (X=Cl, Br, I) or by ligand exchange at stable B2X4(SMe2)2 precursors (X=Cl, Br) with labile dimethylsulfide ligands. The isolated compounds have been fully characterized using NMR spectroscopy, elemental analysis, and, for 20 of these compounds, single-crystal X-ray diffraction, revealing an unexpected variation in the bonding motifs. In addition to the classical B2X4L2 diborane(4) bis-adducts, certain more sterically demanding carbene ligands induce a halide displacement which led to the first halide-bridged monocationic diboron species, [B2X3L2]A (A=BCl4, Br, I). Furthermore, low-temperature 1:1 reactions of B2Cl4 with sterically demanding N-heterocyclic carbenes led to the formation of kinetically unstable mono-adducts, one of which was structurally characterized. A comparison of the NMR spectra and structural data of new and literature-known bis-adducts shows several trends pertaining to the nature of the halides and the stereoelectronic properties of the Lewis bases employed.  相似文献   

11.
De novo catalytic syntheses of diarylamines from a palladium-catalyzed reductive Buchwald-Hartwig amination of nitroarenes with aryl (pseudo)halides is described. The exquisite use of upstream nitroarenes as arylamine surrogates, the judicious selection of bis(pinacolato)diboron (B2pin2) as a stoichiometric reducing agent, and wide substrate scope including (hetero)aryl halides (Cl, Br and I) and aryl triflates, constitute the striking features of the current protocol. Moreover, application of this technique to the syntheses of advanced intermediates and active pharmaceutical ingredients also proved successful, thus providing an alternative step-economical approach to the syntheses of diarylamine-incorporated molecules. Preliminary mechanistic investigation demonstrates that an amine and a nitrosoarene intermediates might be involved in this reductive event.  相似文献   

12.
Many transition‐metal complexes and some metal‐free compounds are able to bind carbon monoxide, a molecule which has the strongest chemical bond in nature. However, very few of them have been shown to induce the cleavage of its C?O bond and even fewer are those that are able to transform CO into organic reagents with potential in organic synthesis. This work shows that bis(pinacolato)diboron, B2pin2, reacts with ruthenium carbonyl to give metallic complexes containing borylmethylidyne (CBpin) and diborylethyne (pinBC≡CBpin) ligands and also metal‐free perborylated C1 and C2 products, such as C(Bpin)4 and C2(Bpin)6, respectively, which have great potential as building blocks for Suzuki–Miyaura cross‐coupling and other reactions. The use of 13CO‐enriched ruthenium carbonyl has demonstrated that the boron‐bound carbon atoms of all of these reaction products arise from CO ligands.  相似文献   

13.
An efficient two‐step method for the assembly of indanone derivatives starting from a simple vinyl arene has been developed. The sequence first involves addition of bis(pinacolato)diboron (B2pin2) and N‐cyano‐N‐phenyl‐p‐methylbenzenesulfonamide (NCTS) to a broad range of styrenes by utilizing IMesCuCl as catalyst. This step simultaneously accomplishes hydroboration of the alkene and ortho cyanation of the benzene unit. The products thus obtained are further functionalized by a AgNO3/Selectfluor‐mediated coupling of the BPin and cyano functionalities to annulate a new five‐membered ring. This combined two‐step sequence provides a versatile method for the site‐selective derivatization of a broad range of vinyl arene substrates.  相似文献   

14.
Reported herein is a streamlined protocol to produce pyridylated diarylmethanes through pyridine-boryl radical induced reductive coupling between para-quinone methides (p-QMs) and 4-cyanopyridines using bis(pinacolato)diboron (B2pin2) as a templated reagent. The metal-free process is characterized by an operationally simple approach, excellent chemoselectivity (1,2- vs. 1,6-selectivity), and a broad substrate scope with good functional group compatibility. The mechanistic studies provided important insights into the reductive cross-coupling process between diarylmethyl radical and pyridine-boryl radical. Moreover, part of the obtained pyridylated diarylmethane products were screened against a panel of cancer cell lines, and 3 v was confirmed to significantly inhibit the proliferation of head and neck squamous cell carcinoma (HNSCC) cells. This method offers a platform for the preparation of new lead compounds with antitumor activity.  相似文献   

15.
A highly selective copper-catalyzed trifunctionalization of allenes has been established based on diborylation/cyanation with bis(pinacolato)diboron (B2pin2) and N-cyano-N-phenyl-p-toluenesulfonamide (NCTS). The Cu-catalyzed trifunctionalization of terminal allenes is composed of three catalytic reactions (first borocupration, electrophilic cyanation, and second borocupration) that provide a densely functionalized product with regio-, chemo- and diastereoselectivity. Allene substrates have multiple reaction-sites, and the selectivities are determined by the suitable interactions (e.g., electronic and steric demands) between the catalyst and substrates. We employed DFT calculations to understand the cascade copper-catalyzed trifunctionalization of terminal allenes, providing densely-functionalized organic molecules with outstanding regio-, chemo- and diastereoselectivity in high yields. The selectivity challenges presented by cumulated π-systems are addressed by systematic computational studies; these give insight to the catalytic multiple-functionalization strategies and explain the high selectivities that we see for these reactions.  相似文献   

16.
The catalytic asymmetric creation of silanes with silicon stereocenters is a long-sought but underdeveloped topic, and only a handful of examples have been reported. Moreover, the construction of chiral silanes containing (more than) two stereocenters is a more arduous task and remains unexploited. We herein report an unprecedented copper-catalyzed desymmetrizing protoboration of divinyl-substituted silanes with bis(pinacolato)diboron (B2pin2). This method enables the facile preparation of an array of enantiomerically enriched boronate-substituted organosilanes bearing contiguous silicon and carbon stereocenters with exclusive regioselectivity and generally excellent diastereo- and enantioselectivity.  相似文献   

17.
Reported is a general procedure to synthesize tetrasubstituted enones, which are borylated in the β‐position, using a copper‐catalyzed four‐component coupling reaction of simple chemical feedstocks: internal alkynes, alkyl halides, bis(pinacolato)diboron (B2pin2), and CO. A broad scope of highly functionalized β‐borylated enones, a largely unknown class of organic compounds, can be accessed efficiently using this method. The synthesis of all‐carbon tetrasubstituted enones was realized by employing the β‐borylated enone unit, without purification, in a Suzuki–Miyaura coupling. The utility of the method was further demonstrated by various transformations, including halogenation, oxidation, and protodeboration, of the corresponding reduced oxaborole species to provide densely substituted allylic alcohol and ketone products.  相似文献   

18.
A practical and direct method was developed for the production of versatile alkyl boronate esters via transition metal-free borylation of primary and secondary alkyl sulfones. The key to the success of the strategy is the use of bis(neopentyl glycolato) diboron (B2neop2), with a stoichiometric amount of base as a promoter. The practicality and industrial potential of this protocol are highlighted by its wide functional group tolerance, the late-stage modification of complex compounds, no need for further transesterification, and operational simplicity. Radical clock, radical trap experiments, and EPR studies were conducted which show that the borylation process involves radical intermediates.  相似文献   

19.
Room temperature Pd(0)/Ad3P-catalyzed cross-coupling reactions of aryl chlorides with bis(pinacolato)diboron are described. The Pd(0)/Ad3P catalyst, generated from Ad3P-coordinated acetanilide-based palladacycle complex, proved to be an efficient catalyst system for the Miyaura borylation reactions of a variety of aryl chlorides with bis(pinacolato)diboron. The mild reaction condition, the easy availability of the catalyst and good coupling yields make these reactions potentially useful in organic synthesis.  相似文献   

20.
Chiral secondary allylboronates are obtained in high enantioselectivities and 1,6:1,4 ratios by the copper‐catalyzed 1,6‐boration of electron‐deficient dienes with bis(pinacolato)diboron (B2(pin)2). The reactions proceed efficiently using catalyst loadings as low as 0.0049 mol %. The allylboronates may be oxidized to the allylic alcohols, and can be used in stereoselective aldehyde allylborations. This process was applied to a concise synthesis of atorvastatin, in which the key 1,6‐boration was performed using only a 0.02 mol % catalyst loading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号