首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exploring high-performance non-precious-metal electrocatalysts for the oxygen reduction reaction (ORR) is critical. Herein, a scalable and cost-effective strategy is reported for the construction of one-dimensional carbon nanofiber architectures with simultaneous decoration of single Fe−Nx sites and highly dispersed Fe/Fe3C nanoparticles for efficient ORR, through the FeIII-complex-assisted electrospinning of gelatin nanofibers with subsequent pre-oxidation and carbonization. Results show that the presence of a FeIII complex enables the 1D gelatin nanofibers to be well retained during the pre-oxidation process. Owing to the distinct 1D nanofiber structure and the synergistic effect of Fe/Fe3C and Fe−Nx sites, the resulting electrocatalyst is highly active for ORR with a half-wave potential of 0.885 V (outperforming commercial Pt/C) and a superior electrochemical stability in alkaline electrolytes. Similarly, it also shows a high power density (144.7 mW cm−2) and a superior stability in Zn-air batteries. This work opens a path for the design and synthesis of 1D carbon electrocatalyst for efficient ORR catalysis.  相似文献   

2.
The development of a non-noble metal cathode ORR catalyst with low cost, high activity and high stability has become an inevitable trend in MFC. The purpose of this study is to develop an efficient and stable Cu, N-codoped porous carbons catalysts with multi-pore structure for MFC. Herein, Cu, N-codoped porous carbons materials (Cu−NC−T) with high N content and multi-pore structure were successfully developed by co-pyrolysis with MOF-199 and melamine. By contrast, Cu-doped porous carbon (Cu−C−T) without melamine was synthesized using MOF-199 as template. The results showed that Cu−NC−T possessed a rough octahedral crystal with a unique multi-mesopore structure with pore centers of 3.4 nm and 11.2 nm, respectively. Owing to high N content, abundantly exposed Cu−Nx active sites and the multi-pore structure, Cu−NC−800 had a pronounced electrochemical ORR activity in neutral solution (onset potential and limiting current density were 0.161 V and −6.256 mA ⋅ cm−2), which were slightly lower than 20 wt % Pt/C (0.189 V and −6.479 mA ⋅ cm−2). Moreover, the MFC with Cu−NC−800 showed a power density of 662.8±3.6 mW ⋅ m−2, which was higher than that of Cu−C−800 (425.7±3.9 mW ⋅ m−2) and was slightly lower than that 20 wt % Pt/C (815.0±6.2 mW ⋅ m−2). The output voltage of MFC with Cu−NC−T had no obvious decreasing trend in 30 days, demonstrating that the Cu−NC−T had great stability.  相似文献   

3.
Fe−N−C catalysts with single-atom Fe−N4 configurations are highly needed owing to the high activity for oxygen reduction reaction (ORR). However, the limited intrinsic activity and dissatisfactory durability have significantly restrained the practical application of proton-exchange membrane fuel cells (PEMFCs). Here, we demonstrate that constructing adjacent metal atomic clusters (ACs) is effective in boosting the ORR performance and stability of Fe−N4 catalysts. The integration of Fe−N4 configurations with highly uniform Co4 ACs on the N-doped carbon substrate (Co4@/Fe1@NC) is realized through a “pre-constrained” strategy using Co4 molecular clusters and Fe(acac)3 implanted carbon precursors. The as-developed Co4@/Fe1@NC catalyst exhibits excellent ORR activity with a half-wave potential (E1/2) of 0.835 V vs. RHE in acidic media and a high peak power density of 840 mW cm−2 in a H2−O2 fuel cell test. First-principles calculations further clarify the ORR catalytic mechanism on the identified Fe−N4 that modified with Co4 ACs. This work provides a viable strategy for precisely establishing atomically dispersed polymetallic centers catalysts for efficient energy-related catalysis.  相似文献   

4.
An ice/salt-assisted strategy has been developed to achieve the green and efficient synthesis of ultrathin two-dimensional (2D) micro/mesoporous carbon nanosheets (CNS) with the dominant active moieties of Fe−N4 (Fe-N-CNS) as high-performance electrocatalysts for the oxygen reduction reaction (ORR). The strategy involves freeze-drying a mixture of iron porphyrin and KCl salt using ice as template followed by a confined pyrolysis with KCl as an independent sealed nanoreactor to facilitate the formation of 2D carbon nanosheets, N incorporation, and porosity creation. The well-defined assembly of ultrathin 2D carbon nanosheets ensures high utilization of D1 and D3 Fe−N4 active sites, and effectively promotes the mass transport of ORR reactants by virtue of the pronounced mesoporous structure. The resulting Fe-N-CNS electrocatalyst was shown to exhibit superior ORR activity, better electrochemical durability, and methanol tolerance towards ORR in alkaline electrolyte relative to the commercial Pt/C electrocatalyst.  相似文献   

5.
Designing highly efficient non-precious based electrocatalysts for oxygen reduction reaction(ORR) is of significance for the rapid development of metal-air batteries.Herein,a hydrothermal-pyrolysis method is employed to fabricate Fe,N co-doped porous carbon materials as effective ORR electrocatalyst through adopting graphitic carbon nitride(g-C3 N4) as both the self-sacrificial templates and N sources.The gC3 N4 provides a high concentration of unsatur...  相似文献   

6.
Rational designs of electrocatalytic active sites and architectures are of great importance to develop cost-efficient non-noble metal electrocatalysts towards efficient oxygen reduction reaction (ORR) for high-performance energy conversion and storage devices. In this work, active amorphous Fe-based nanoclusters (Fe NC) are elaborately embedded at the inner surface of balloon-like N-doped hollow carbon (Fe NC/Ch sphere) as an efficient ORR electrocatalyst with an ultrathin wall of about 10 nm. When evaluated for electrochemical performance, Fe NC/Ch sphere exhibits decent ORR activity with a diffusion-limited current density of ~5.0 mA/cm2 and a half-wave potential of ~0.81 V in alkaline solution, which is comparable with commercial Pt/C and superior to Fe nanoparticles supported on carbon sheet (Fe NP/C sheet) counterpart. The electrochemical analyses combined with electronic structure characterizations reveal that robust Fe-N interactions in amorphous Fe nanoclusters are helpful for the adsorption of surface oxygen-relative species, and the strong support effect of N-doped hollow carbon is benefitial for accelerating the interfacial electron transfer, which jointly contributes to improve ORR kinetics for Fe NC/Ch sphere.  相似文献   

7.
High-performance and low-cost bifunctional catalysts are crucial to energy conversion and storage devices. Herein, a novel oxygen electrode catalyst with high oxygen evolution reaction and oxygen reduction reaction (OER/ORR) performance is reported based on bimetal FeNi nanoparticles anchored on N-doped graphene-like carbon (FeNi/N−C). The complete 2D ultrathin carbon nanosheet is induced by etching and stripping of molten sodium chloride and its ions in the carbonization process at suitable temperature. The obtained FeNi/N−C catalyst exhibits rapid reaction kinetics for OER, efficient four electron transfer for ORR, and outstanding bifunctional performance with reversible oxygen electrode index of 0.87 V for OER/ORR. Zn-air batteries with a high open-circuit voltage of 1.46 V and a stable discharge voltage of 1.23 V are assembled using liquid electrolytes, zinc sheet as Zn-electrode and FeNi/N−C coating on carbon cloth as air-electrode. The specific capacity is as high as 816 mAh g−1 and there is extremely little decay after charge-discharge cycle time of 275 h for the FeNi/N−C as oxygen electrode catalyst in Zn-air battery, which are much better than that assembled with Pt/C−RuO2 catalyst.  相似文献   

8.
Single Fe atoms dispersed on hierarchically structured porous carbon (SA‐Fe‐HPC) frameworks are prepared by pyrolysis of unsubstituted phthalocyanine/iron phthalocyanine complexes confined within micropores of the porous carbon support. The single‐atom Fe catalysts have a well‐defined atomic dispersion of Fe atoms coordinated by N ligands on the 3D hierarchically porous carbon support. These SA‐Fe‐HPC catalysts are comparable to the commercial Pt/C electrode even in acidic electrolytes for oxygen reduction reaction (ORR) in terms of the ORR activity (E1/2=0.81 V), but have better long‐term electrochemical stability (7 mV negative shift after 3000 potential cycles) and fuel selectivity. In alkaline media, the SA‐Fe‐HPC catalysts outperform the commercial Pt/C electrode in ORR activity (E1/2=0.89 V), fuel selectivity, and long‐term stability (1 mV negative shift after 3000 potential cycles). Thus, these nSA‐Fe‐HPCs are promising non‐platinum‐group metal ORR catalysts for fuel‐cell technologies.  相似文献   

9.
Metal single atoms (SAs) anchored in carbon support via coordinating with N atoms are efficient active sites to oxygen reduction reaction (ORR). However, rational design of single atom catalysts with highly exposed active sites is challenging and urgently desirable. Herein, an anion exchange strategy is presented to fabricate Fe-N4 moieties anchored in hierarchical carbon nanoplates composed of hollow carbon spheres (Fe-SA/N-HCS). With the coordinating O atoms are substituted by N atoms, Fe SAs with Fe-O4 configuration are transformed into the ones with Fe-N4 configuration during the thermal activation process. Insights into the evolution of central atoms demonstrate that the SAs with specific coordination environment can be obtained by modulating in situ anion exchange process. The strategy produces a large quantity of electrochemical accessible site and high utilization rate of Fe-N4. Fe-SA/N-HCS shows excellent ORR electrocatalytic performance with half-wave potential of 0.91 V (vs. RHE) in 0.1 M KOH, and outstanding performance when used in rechargeable aqueous and flexible Zn-air batteries. The evolution pathway for SAs demonstrated in this work offers a novel strategy to design SACs with various coordination environment and enhanced electrocatalytic activity.  相似文献   

10.
Well‐dispersed carbon‐coated or nitrogen‐doped carbon‐coated copper‐iron alloy nanoparticles (FeCu@C or FeCu@C?N) in carbon‐based supports are obtained using a bimetallic metal‐organic framework (Cu/Fe‐MOF‐74) or a mixture of Cu/Fe‐MOF‐74 and melamine as sacrificial templates and an active‐component precursor by using a pyrolysis method. The investigation results attest formation of Cu?Fe alloy nanoparticles. The obtained FeCu@C catalyst exhibits a catalytic activity with a half‐wave potential of 0.83 V for oxygen reduction reaction (ORR) in alkaline medium, comparable to that on commercial Pt/C catalyst (0.84 V). The catalytic activity of FeCu@C?N for ORR (Ehalf‐wave=0.87 V) outshines all reported analogues. The excellent performance of FeCu@C?N should be attributed to a change in the energy of the d‐band center of Cu resulting from the formation of the copper–iron alloy, the interaction between alloy nanoparticles and supports and N‐doping in the carbon matrix. Moreover, FeCu@C and FeCu@C?N show better electrochemical stability and methanol tolerance than commercial Pt/C and are expected to be widely used in practical applications.  相似文献   

11.
The past decade has witnessed the great potential of Fe-based single-atom electrocatalysis in catalyzing oxygen reduction reaction (ORR). However, it remains a grand challenge to substantially improve their intrinsic activity and long-term stability in acidic electrolytes. Herein, we report a facile chemical vapor deposition strategy, by which high-density Fe atoms (3.97 wt%) are coordinated with square-planar para-positioned nitrogen and phosphorus atoms in a hierarchical carbon framework. The as-crafted atomically dispersed Fe catalyst (denoted Fe-SA/PNC) manifests an outstanding activity towards ORR over the entire pH range. Specifically, the half-wave potential of 0.92 V, 0.83 V, and 0.86 V vs. reversible hydrogen electrode (RHE) are attained in alkaline, neutral, and acidic electrolytes, respectively, representing the high performance among reported catalysts to date. Furthermore, after 30,000 durability cycles, the Fe-SA/PNC remains to be stable with no visible performance decay when tested in 0.1 M KOH and 0.5 M H2SO4, and only a minor negative shift of 40 mV detected in 0.1 M HClO4, significantly outperforming commercial Pt/C counterpart. The coordination motif of Fe-SA/PNC is validated by density functional theory (DFT) calculations. This work provides atomic-level insight into improving the activity and stability of non-noble metal ORR catalysts, opening up an avenue to craft the desired single-atom electrocatalysts.  相似文献   

12.
Oxygen reduction reaction (ORR) is of critical significance in the advancement of fuel cells and zinc-air batteries. The iron-nitrogen (Fe−Nx) sites exhibited exceptional reactivity towards ORR. However, the task of designing and controlling the local structure of Fe species for high ORR activity and stability remains a challenge. Herein, we have achieved successful immobilization of Fe species onto the highly curved surface of S, N co-doped carbonaceous nanosprings (denoted as FeNS/Fe3C@CNS). The induction of this twisted configuration within FeNS/Fe3C@CNS arose from the assembly of chiral templates. For electrocatalytic ORR tests, FeNS/Fe3C@CNS exhibits a half-wave potential (E1/2) of 0.91 V in alkaline medium and a E1/2 of 0.78 V in acidic medium. The Fe single atoms and Fe3C nanoparticles are coexistent and play as active centers within FeNS/Fe3C@CNS. The highly curved surface, coupled with S substitution in the coordination layer, served to reduce the energy barrier for ORR, thereby enhancing the intrinsic catalytic activity of the Fe single-atom sites. We also assembled a wearable flexible Zn-air battery using FeNS/Fe3C@CNS as electrocatalysts. This work provides new insights into the construction of highly curved surfaces within carbon materials, offering high electrocatalytic efficacy and remarkable performance for flexible energy conversion devices.  相似文献   

13.
Electrochemical CO2 reduction reaction (CO2RR) to chemical fuels such as formate offers a promising pathway to carbon-neutral future, but its practical application is largely inhibited by the lack of effective activation of CO2 molecules and pH-universal feasibility. Here, we report an electronic structure manipulation strategy to electron-rich Bi nanosheets, where electrons transfer from Cu donor to Bi acceptor in bimetallic Cu−Bi, enabling CO2RR towards formate with concurrent high activity, selectivity and stability in pH-universal (acidic, neutral and alkaline) electrolytes. Combined in situ Raman spectra and computational calculations unravel that electron-rich Bi promotes CO2 formation to activate CO2 molecules, and enhance the adsorption strength of *OCHO intermediate with an up-shifted p-band center, thus leading to its superior activity and selectivity of formate. Further integration of the robust electron-rich Bi nanosheets into III–V-based photovoltaic solar cell results in an unassisted artificial leaf with a high solar-to-formate (STF) efficiency of 13.7 %.  相似文献   

14.
Constructing atom-clusters (ACs) with in situ modulation of coordination environment and simultaneously hollowing carbon support are critical yet challenging for improving electrocatalytic efficiency of atomically dispersed catalysts (ADCs). Herein, a general diffusion-controlled strategy based on spatial confining and Kirkendall effect is proposed to construct metallic ACs in N,P,S triply-doped hollow carbon matrix (MACs/NPS−HC, M=Mn, Fe, Co, Ni, Cu). Thereinto, FeACs/NPS−HC with the best catalytic activity for oxygen reduction reaction (ORR) is thoroughly investigated. Unlike the benchmark sample of symmetrical N-surrounded iron single-atoms in N-doped carbon (FeSAs/N−C), FeACs/NPS−HC comprises bi-/tri-atomic Fe centers with engineered S/N coordination. Theoretical calculation reveals that proper Fe gathering and coordination modulation could mildly delocalize the electron distribution and optimize the free energy pathways of ORR. In addition, the triple doping and hollow structure of carbon matrix could further regulate the local environment and allow sufficient exposure of active sites, resulting in more enhanced ORR kinetics on FeACs/NPS−HC. The zinc-air battery assembled with FeACs/NPS−HC as cathodic catalyst exhibits all-round superiority to Pt/C and most Fe-based ADCs. This work provides an exemplary method for establishing atomic-cluster catalysts with engineered S-dominated coordination and hollowed carbon matrix, which paves a new avenue for the fabrication and optimization of advanced ADCs.  相似文献   

15.
It remains challenging to rationally synthesize iron/nitrogen-doped carbon (Fe/N-C) catalysts with rich Fe−Nx atomic active sites for improved oxygen reduction reaction (ORR) electrocatalysis. A highly efficient Fe/N-C catalyst, which has been synthesized through a spatial isolation strategy, is reported. Derived from bioinspired polydopamine (PDA)-based hybrid microsphere precursors, it is a multifunctional carrier that loads atomically dispersed Fe3+/Zn2+ ions through coordination interactions and N-rich melamine through electrostatic attraction and covalent bonding. The Zn2+ ions and melamine in the precursor efficiently isolate Fe3+ atoms upon pyrolysis to form rich Fe−Nx atomic active sites, and generate abundant micropores during high-temperature treatment; as a consequence, the resultant Fe-N/C catalyst contains rich catalytically active Fe−Nx sites and a hierarchical porous structure. The catalyst exhibits improved ORR activity that is superior to and close to that of Pt/C in alkaline and acidic solutions, respectively.  相似文献   

16.
Fe/N/C single-atom catalysts containing Fe−Nx sites prepared by pyrolysis are promising cathode materials for fuel cells and metal-air batteries due to their high oxygen reduction reaction (ORR) activities. We have developed iron complexes containing N2- or N3-chelating coordination structures with preorganized aromatic rings in a 1,12-diazatriphenylene framework tethering bromo substituents as precursors to precisely construct Fe−N4 sites in an Fe/N/C catalyst. One-step pyrolysis of the iron complex with carbon black forms atomically dispersed Fe−N4 sites without iron aggregates. X-ray absorption spectroscopy (XAS) and electrochemical measurements revealed that the iron complex with N3-coordination is more effectively converted to Fe−N4 sites catalyzing ORR with a TOF value of 0.21 e site−1 s−1 at 0.8 V vs. RHE. This indicates that the formation of Fe−N4 sites is controlled by precise tuning of the chemical structure of the iron complex precursor.  相似文献   

17.
Nonprecious-metal-based electrocatalysts with low cost, high activity, and stability are considered as one of the most promising alternatives to Pt-based catalysts for the oxygen reduction reaction (ORR). Herein, an economical and easy-to-fabricate catalyst is developed, that is, Fe/Fe3C embedded in N-doped hollow carbon spheres (Fe/Fe3C/NHCS), which gave the half-wave potential of 0.84 V in 0.1 m KOH, similar to the commercial Pt/C catalyst. Surprisingly, the favorable ORR performance of the as-prepared catalyst was obtained in both acidic and neutral conditions with almost a four-electron pathway and low H2O2 yield, which desirable the development of the proton exchange membrane (PEM) and microbial electrolysis cell (MEC) technology. Additionally, the obtained catalyst demonstrated better long-term stability and high methanol tolerance over a wide range of pH. These features could be mainly attributed to the synergistic effect between Fe/Fe3C and Fe-Nx sites, the hollow structure with mesopores, and the well-dispersed Fe/Fe3C nanoparticles owing to the existence of the abundant hydrophilic groups within the HCS precursor. As such, designing an efficient and cheap ORR catalyst that can operate at alkaline, acidic, and neutral solutions is highly desirable, yet challenging.  相似文献   

18.
The conversion of biomass into valuable carbon composites as efficient non‐precious metal oxygen‐reduction electrocatalysts is attractive for the development of commercially viable polymer electrolyte membrane fuel‐cell technology. Herein, a versatile iron–tannin‐framework ink coating strategy is developed to fabricate cellulose‐derived Fe3C/Fe‐N‐C catalysts using commercial filter paper, tissue, or cotton as a carbon source, an iron–tannin framework as an iron source, and dicyandiamide as a nitrogen source. The oxygen reduction performance of the resultant Fe3C/Fe‐N‐C catalysts shows a high onset potential (i.e. 0.98 V vs the reversible hydrogen electrode (RHE)), and large kinetic current density normalized to both geometric electrode area and mass of catalysts (6.4 mA cm?2 and 32 mA mg?1 at 0.80 V vs RHE) in alkaline condition. This method can even be used to prepare efficient catalysts using waste carbon sources, such as used polyurethane foam.  相似文献   

19.
Various advanced catalysts based on sulfur‐doped Fe/N/C materials have recently been designed for the oxygen reduction reaction (ORR); however, the enhanced activity is still controversial and usually attributed to differences in the surface area, improved conductivity, or uncertain synergistic effects. Herein, a sulfur‐doped Fe/N/C catalyst (denoted as Fe/SNC) was obtained by a template‐sacrificing method. The incorporated sulfur gives a thiophene‐like structure (C−S−C), reduces the electron localization around the Fe centers, improves the interaction with oxygenated species, and therefore facilitates the complete 4 e ORR in acidic solution. Owing to these synergistic effects, the Fe/SNC catalyst exhibits much better ORR activity than the sulfur‐free variant (Fe/NC) in 0.5 m H2SO4.  相似文献   

20.
《中国化学快报》2023,34(10):108142
Fe-NX/C electrocatalysts have aroused extensive interest in accelerating sluggish oxygen reduction reaction (ORR) kinetics as potential alternatives to platinum catalysts in rechargeable Zn-air batteries (ZABs). However, the low density and poor accessibility of Fe-NX sites have severely restricted the electrocatalytic performance of Fe-NX/C. Herein, Fe, N co-doped ordered mesoporous carbon fiber bundles are prepared through a ligand-assisted strategy with nitrogen-rich 1,10-phenanthroline as space isolation agent. 1,10-Phenanthroline reveals a six-membered heterocyclic structure containing abundant nitrogen species to tightly coordinate with Fe ions, which is conducive to achieving high-density Fe-NX sites. Meanwhile, the adoption of SBA-15 as hard-templates enables the catalysts with highly ordered channels and large specific surface areas, improving the accessibility of Fe-NX sites. The optimal catalyst (PDA-Fe-900) demonstrates a positive half-wave potential of 0.84 V (vs. RHE) in alkaline solution, outperforming the commercial Pt/C (0.83 V). In addition, PDA-Fe-900 delivers comparable ORR performance to commercial Pt/C in acidic electrolyte. Impressively, when PDA-Fe-900 is employed as an air cathode, it achieves large power densities of 163.0 mW/cm2 in liquid-state ZAB and 116.6 mW/cm2 in the flexible solid-state ZAB. This work provides an efficient ligand-assisted pathway for fabricating catalysts with dense and accessible Fe-NX sites as high-performance ORR electrocatalysts for ZABs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号