首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The outstanding electrocatalytic activity of ruthenium (Ru) phosphides toward the hydrogen evolution reaction (HER) has received wide attention. However, the effect of the Ru phosphide phase on the HER performance remains unclear. Herein, a two-step method was developed to synthesize nanoparticles of three types of Ru phosphides, namely, Ru2P, RuP, and RuP2, with similar morphology, dimensions, loading density, and electrochemical surface area on graphene nanosheets by simply controlling the dosage of phytic acid as P source. Electrochemical tests revealed that Ru2P/graphene shows the highest intrinsic HER activity, followed by RuP/graphene and RuP2/graphene. Ru2P/graphene affords a current density of 10 mA cm−2 at an overpotential of 18 mV in acid media. Theoretical calculations further showed that P-deficient Ru2P has a lower free energy of hydrogen adsorption on the surface than other two, P-rich Ru phosphides (RuP, RuP2), which confirms the excellent intrinsic HER activity of Ru2P and is consistent with experiment results. The work reveals for the first time a clear trend of HER activity among three Ru phosphide phases.  相似文献   

2.
Water electrolysis offers a zero-carbon route to generate renewable energy conversion systems. Herein, a self-supported nickel phosphosulfide nanosheet (NS) electrocatalyst was fabricated at a low temperature on carbon cloth, which was then subjected to Ar etching to enhance its catalytic activity. Etching resulted in better hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) performance than other samples, with overpotentials of 103.1 mV (at 10 mA cm−2) and 278.9 mV (at 50 mA cm−2), respectively. The characterization results confirmed that Ar etching created a thin amorphous layer around the NiPS3 NSs, which increased the number of active sites and modulated their electronic structures. These 3D-structured NiPS3 NSs and their subsequent Ar etching process show promise for applications in overall water splitting in alkaline media.  相似文献   

3.
As an electrocatalyst with abundant resources and great potential, molybdenum disulfide is regarded as one of the most likely alternatives to expensive noble‐metals catalysts. However, it is still a challenge to achieve large scale production of few‐layer MoS2 with enhancing activity of electrocatalytic hydrogen reaction at ambient conditions. Herein, we developed a simple environmentally friendly two‐step method, which included intercalation reaction and a subsequent electrochemical reduction reaction for mass preparation of defect‐rich desulfurized MoSx (D?MoSx) nanosheets with plentiful sulfur vacancies. The ratio of sulfur‐molybdenum atoms can be adjusted from 2 : 1 to 1.4 : 1 by regulating the desulfurization voltage. It was found that the HER catalytic activity of the D?MoSx was enhanced compared with that of pristine MoS2 (P?MoS2), the current density of D?MoSx (desulfurization at ?1.0 V) at ?0.3 V versus RHE was about 169% of the P?MoS2, and the Tafel slope decreased to 136 mV dec?1. This method can be widely applied to large‐scale preparation of other two‐dimensional materials.  相似文献   

4.
采用阳极氧化法与原位还原碳化法相结合,在电击穿条件下可控制备了具有介孔结构的碳化钨纳米片团簇(WC NFs)。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、N2吸附-脱附测试表征其物相、微观结构和孔径分布。在1 mol·L-1H2SO4溶液中采用线性扫描伏安法、循环伏安法、计时电流法以及交流阻抗谱测试催化剂的电化学性能。结果表明,在650℃下还原碳化所制备的WC NFs具有最佳的电催化析氢性能,在电流密度为10 mA·cm-2时过电位η10仅为150 mV,Tafel斜率为56 mV·dec-1,并具有良好的循环稳定性。  相似文献   

5.
Introducing sulfur into the surface of molybdenum phosphide (MoP) produces a molybdenum phosphosulfide (MoP|S) catalyst with superb activity and stability for the hydrogen evolution reaction (HER) in acidic environments. The MoP|S catalyst reported herein exhibits one of the highest HER activities of any non‐noble‐metal electrocatalyst investigated in strong acid, while remaining perfectly stable in accelerated durability testing. Whereas mixed‐metal alloy catalysts are well‐known, MoP|S represents a more uncommon mixed‐anion catalyst where synergistic effects between sulfur and phosphorus produce a high‐surface‐area electrode that is more active than those based on either the pure sulfide or the pure phosphide. The extraordinarily high activity and stability of this catalyst open up avenues to replace platinum in technologies relevant to renewable energies, such as proton exchange membrane (PEM) electrolyzers and solar photoelectrochemical (PEC) water‐splitting cells.  相似文献   

6.
周琦  黎新宝  焦孙治 《无机化学学报》2021,37(11):1970-1980
利用快速凝固结合化学脱铝模板法制备前驱体纳米多孔Ni-Co合金,再经气相沉积硫和热氢还原制备纳米多孔Co9S8/Ni3S2复合电极材料。研究表明,通过气相沉积,硫原子与Ni-Co合金原位生成CoS2/NiS2复合相,再经过热氢还原后,形成硫原子比例较低的Co9S8/Ni3S2复合相。该热氢还原过程不仅提高了Co9S8/Ni3S2各元素周围的电子密度,而且在其表面调制出有介孔结构的异质界面,进而提高其电子传输能力并增大活性比表面积。相比于其他同条件下制备的Ni、Co硫化物,Co9S8/Ni3S2拥有更佳的析氢反应(HER)活性,在50 mA·cm-2的电流密度下,Co9S8/Ni3S2的HER过电位为234 mV,Tafel斜率为106 mV·dec-1,经稳定性测试后,电压变化仅为14 mV。  相似文献   

7.
Molybdenum disulfide (MoS2) has been regarded as a favorable photocatalytic co‐catalyst and efficient hydrogen evolution reaction (HER) electrocatalyst alternative to expensive noble‐metals catalysts, owing to earth‐abundance, proper band gap, high surface area, and fast electron transfer ability. In order to achieve a higher catalytic efficiency, defects strategies such as phase engineering and vacancy introduction are considered as promising methods for natural 2H‐MoS2 to increase its active sites and promote electron transfer rate. In this study, we report a new two‐step defect engineering process to generate vacancies‐rich hybrid‐phase MoS2 and to introduce Ru particles at the same time, which includes hydrothermal reaction and a subsequent hydrogen reduction. Compositional and structural properties of the synthesized defects‐rich MoS2 are investigated by XRD, XPS, XAFS and Raman measurements, and the electrochemical hydrogen evolution reaction performance, as well as photocatalytic hydrogen evolution performance in the ammonia borane dehydrogenation are evaluated. Both catalytic activities are boosted with the increase of defects concentrations in MoS2, which ascertains that the defects engineering is a promising route to promote catalytic performance of MoS2.  相似文献   

8.
采用阳极氧化法制备得到锐钛矿型二氧化钛(TiO2)纳米管阵列,在其表面通过电镀法沉积Pt,得到了低铂的Pt/TiO2纳米管电极(Pt/TiO2-NTs)。通过扫描电子显微镜和透射电子显微镜对其进行形貌表征后发现,Pt较为均匀地分布于TiO2纳米管阵列中。进一步的电催化析氢结果表明,Pb/TiO2-NTs在10 m A·cm-2时,过电位为0.079 V,塔菲尔斜率为42.7 m V·dec-1,较Pt/TiO2致密膜电极(Pt/TiO2-F)以及商业Pt/C催化剂显示了更为优异的催化活性。同时,在长循环稳定性测试(3 000个周期)中,Pb/TiO2-NTs相较于上述2种对比电极显示了更为优异的稳定性。  相似文献   

9.
Efficient hydrogen evolution reaction (HER) through effective and inexpensive electrocatalysts is a valuable approach for clean and renewable energy systems. Here, single‐shell carbon‐encapsulated iron nanoparticles (SCEINs) decorated on single‐walled carbon nanotubes (SWNTs) are introduced as a novel highly active and durable non‐noble‐metal catalyst for the HER. This catalyst exhibits catalytic properties superior to previously studied nonprecious materials and comparable to those of platinum. The SCEIN/SWNT is synthesized by a novel fast and low‐cost aerosol chemical vapor deposition method in a one‐step synthesis. In SCEINs the single carbon layer does not prevent desired access of the reactants to the vicinity of the iron nanoparticles but protects the active metallic core from oxidation. This finding opens new avenues for utilizing active transition metals such as iron in a wide range of applications.  相似文献   

10.
蒋博龙  崔艳艳  史顺杰  姜楠  谭伟强 《化学学报》2022,80(10):1394-1400
电解水制氢是最具潜力的绿氢制备技术, 而高效析氢反应(HER)催化剂的开发对其大规模推广意义重大. 选用氯化镍和钼酸铵为镍源和钼源, 通过原位生长法获得NiMo双金属催化剂前驱体, 再以二腈二胺为氮源, 高温氮化-程序升温法制备了一系列NiMoxN@NC催化剂(x代表钼酸铵和氯化镍的物质的量比), 并对催化剂进行了结构、形貌以及金属价态表征. 分别在1 mol/L KOH碱液以及模拟海水中分析了析氢(HER)性能. 结果表明, 碱液中NiMoxN@NC催化剂均具有良好的电荷转移速率(Rct<1 Ω), 具有较好的内在催化活性(Tafel斜率103~168 mV/dec). 其中, NiMo0.75N@NC催化剂具有最高的极限电流(–178 mA/cm2), 最小的过电势η10=0.164 V, η100=0.448 V), 最高的内在催化活性, Tafel斜率只有103 mV/dec, 且具有较好的稳定性. 在海水中, 在10 mA/cm2和40 mA/cm2的负载电流下, NiMo0.75N@NC催化剂依旧表现出了较好的稳定性.  相似文献   

11.
Earth-abundant NiMo-oxide nanostructures were investigated as efficient electrocatalytic materials for the hydrogen evolution reaction (HER) in acidic media. Synthesis and non-synthesis parameters were thoroughly studied. For the non-synthesis parameters, the variation in Nafion loading resulted in a volcano-like trend, while the change in the electrocatalyst loading showed that the marginal benefit of high loadings attenuates due to mass-transfer limitations. The addition of carbon black to the electrocatalyst layer improved the HER performance at low loadings. Different carbon black grades showed a varying influence on the HER performance. Regarding the synthesis parameters, a calcination temperature of 500 °C, a calcination time between 20 and 720 min, a stoichiometric composition (Ni/Mo = 1), an acidic precursor solution, and a fuel-lean system were conditions that yielded the highest HER activity. The in-house NiMoO4/CB/Nafion electrocatalyst layer was found to offer a better long-term performance than the commercial Pt/C.  相似文献   

12.
Au nanoparticles were decorated on a 2H MoS2 surface to form an Au/MoS2 composite by pulse laser deposition. Improved HER activity of Au/MoS2 is evidenced by a positively shifted overpotential (−77 mV) at a current density of −10 mA cm−2 compared with pure MoS2 nanosheets. Experimental evidence shows that the interface between Au and MoS2 provides more sites to combine protons to form an active H atom. The density functional theory calculations found that new Au active sites on the Au and MoS2 interface with improved conductivity of the whole system are essential for enhancing HER activity of Au/MoS2.  相似文献   

13.
Although natural or artificial modified pyrimidine nucleobases represent important molecules with valuable properties as constituents of DNA and RNA, no systematic analyses of the structural aspects of bromo derivatives of cytosine have appeared so far in the literature. In view of the biochemical and pharmaceutical relevance of these compounds, six different crystals containing proton-transfer derivatives of 5-bromocytosine are prepared and analyzed in the solid-state by single crystal X-ray diffraction. All six compounds are organic salts, with proton transfer occurring to the Nimino atom of the pyridine ring. Experimental results are then complemented with Hirshfeld surface analysis to quantitively evaluate the contribution of different intermolecular interactions in the crystal packing. Furthermore, theoretical calculations, based on different arrangements of molecules extracted from the crystal structure determinations, are carried out to analyze the formation mechanism of halogen bonds (XBs) in these compounds and provide insights into the nature and strength of the observed interactions. The results show that the supramolecular architectures of the six molecular salts involve extensive classical intermolecular hydrogen bonds. However, in all but one proton-transfer adducts, weak to moderate XBs are revealed by C–BrO short contacts between the bromine atom in the fifth position, which acts as XB donor (electron acceptor). Moreover, the lone pair electrons of the oxygen atom of adjacent pyrimidine nucleobases and/or counterions or water molecules, which acts as XB acceptor (electron donor).  相似文献   

14.
We explored the aspirin adsorption and their hydrogen evolution reaction (HER) activity in waste water of borocarbonitride sheets. Our results indicate that BCN sheets considered here show HER activity and exhibit superior performance regarding adsorption of aspirin in waste water in comparison with graphene and hexagonal boron nitride (h-BN). The drug molecule (aspirin) possesses a strong affinity to BCN, with the order of binding energy on following the order BCN∼h-BN>graphene. Upon drug adsorption, the band gap of h-BN is found to be reduced by up to 33 %, whereas the bandgaps of graphene and BCN remain unaltered that makes BCN a potential candidate for HER in waste water.  相似文献   

15.
The surface modification of electrodes attracts great interest in electrocatalysis. It has often been observed that deposition of foreign adatoms on the surface of an electrode can originate a significant enhancement in the catalytic activity. For example, it has been reported that nickel deposits on Pt surfaces improve the rate of the hydrogen evolution reaction (HER, Nature Energy 2017, 2, 17031). During the deposition process of such metal adlayers, the pH and the nature of the ions in the electrolyte play an important role. Phosphate species are typically used to prepare buffer solutions in a wide range of pH. Therefore, electrolytes containing phosphate species are used in a large number of applications. However, the effect of phosphate on platinum surface modification with nickel deposits has not been studied yet. In this work, new data about the interaction of phosphate with nickel adatoms deposited on Pt(111) at pH 5 is investigated using cyclic voltammetry and infrared spectroscopy. The results show that, when nickel is in solution, the phosphate ions are adsorbed at lower potentials than in the absence of nickel. In addition, Laser-Induced Temperature Jump Technique demonstrates that nickel facilitates the adsorption of phosphate because of a shift of the potential of zero charge (pzc) toward negative potentials. This increases the magnitude of the positive electric field on the electrode surface, at a given potential E>pzc, facilitating the adsorption of anions. CO displacement technique has been also employed to obtain additional information about co-adsorbed phosphate on nickel adlayers. Finally, the HER has been studied at pH 5 in the presence of nickel, with and without phosphate in the bulk solution.  相似文献   

16.
17.
采用脱合金化和水热合成的方法制备纳米多孔Ni和纳米多孔Ni3S2/Ni复合电极。通过N2吸附-脱附测试、XRD、SEM、TEM等方法表征电极的孔径分布、物相和微观结构。在1 mol·L-1的NaOH溶液中,运用线性扫描伏安(LSV)曲线、交流阻抗(EIS)谱图、恒电流电解法等测试电极的电催化析氢性能。结果表明:在电流密度为50 mA·cm-2时,与纳米多孔Ni相比,Ni3S2/Ni合金具有更低的析氢过电位以及更高的析氢活性,同时纳米多孔Ni3S2/Ni复合电极具有更低表观活化能和电子转移阻抗,进一步明确了过渡金属硫化物对电催化析氢性能的特殊贡献。  相似文献   

18.
采用脱合金化和水热合成的方法制备纳米多孔Ni和纳米多孔Ni3S2/Ni复合电极。通过N2吸附-脱附测试、XRD、SEM、TEM等方法表征电极的孔径分布、物相和微观结构。在1 mol·L-1的NaOH溶液中,运用线性扫描伏安(LSV)曲线、交流阻抗(EIS)谱图、恒电流电解法等测试电极的电催化析氢性能。结果表明:在电流密度为50 mA·cm-2时,与纳米多孔Ni相比,Ni3S2/Ni合金具有更低的析氢过电位以及更高的析氢活性,同时纳米多孔Ni3S2/Ni复合电极具有更低表观活化能和电子转移阻抗,进一步明确了过渡金属硫化物对电催化析氢性能的特殊贡献。  相似文献   

19.
Covalently cross-linked heterostructures of 2D materials are a new class of materials which possess electrochemical and photochemical hydrogen evolution properties. It was of considerable interest to investigate the role of interlayer spacing in the nanocomposites involving MoS2 and graphene sheets and its control over electronic structures and catalytic properties. We have investigated this problem with emphasis on the hydrogen evolution properties of these structures by a combined experimental and theoretical study. We have linked MoS2 based nanocomposites with other 2D materials with varying interlayer spacing by changing the linker and studied their hydrogen evolution properties. The hydrogen evolution activity for these composites decreases with increasing linker length, which we can link to a decrease in magnitude of charge transfer across the layers with increasing interlayer spacing. Factors such as the nature of the sheets, interlayer distance as well as the nature of the linker provide pathways to tune the properties of covalently cross-linked 2D material rendering this new class of materials highly interesting.  相似文献   

20.
Experimental adsorption isotherms were measured and computer simulations were performed to determine the nature of the H2 gas uptake in the low‐density ptert‐butylcalix[4]arene (tBC) phase. 1H NMR peak intensity measurements for pressures up to 175 bar were used to determine the H2 adsorption isotherm. Weak surface adsorption (up to ≈2 mass % H2) and stronger adsorption (not exceeding 0.25 mass % or one H2 per calixarene bowl) inside the calixarene phase were detected. The latter type of adsorbed H2 molecule has restricted motion and shows a reversible gas adsorption/desorption cycle. Pulsed field gradient (PFG) NMR pressurization/depressurization measurements were performed to study the diffusion of H2 in the calixarene phases. Direct adsorption isotherms by exposure of the calixarene phase to pressures of H2 gas to ≈60 bar are also presented, and show a maximum H2 adsorption of 0.4 H2 per calixarene bowl. Adsorption isotherms of H2 in bulk tBC have been simulated using grand canonical Monte Carlo calculations in a rigid tBC framework, and yield adsorptions of ≈1 H2 per calixarene bowl at saturation. Classical molecular dynamics simulations with a fully flexible calixarene molecular force field are used to determine the guest distribution and inclusion energy of the H2 in the solid with different loadings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号