首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Graphdiyne (GDY), as a new carbon allotrope, possessing both sp- and sp2-hybridized carbon atoms, has attracted extensive attention due to great application potentials in various fields. To realize a fundamental understanding of the intrinsic properties of GDY, the controllable synthesis of ultrathin and highly crystalline GDY is necessary and challenging. Herein, a confined interfacial synthetic strategy towards highly crystalline ultrathin GDY at the water/oil/organogel interface, with greatly improved control over GDY structures, is reported. The morphology and chemical composition of GDY was characterized accordingly. After loading with gold, the as-prepared hydrophobic Au/GDY system showed excellent performance in the nitrogen reduction reaction, reaching the highest yield of 4.15 μg cm−2 h−1 with a Faraday efficiency of 1.95 %.  相似文献   

2.
An experimental study of the preparation and gas permeation characterization of aqueous membranes immobilized across the whole thickness or in a thin section of microporous hydrophobic Celgard 2400 and 2500 polypropylene films is described. Such films are identified as fully exchanged immobilized liquid membranes (ILMs) and ultrathin ILMs, respectively. Pure component permeation of N2 and separation characteristics of CO2N2 mixtures through fully exchanged aqueous ILMs have been studied in the range of 127—1106 cmHg applied pressure difference. The values of the tortuosity factor for the Celgard 2400 and 2500 support films have been determined over a wide pressure range and compared with other independent estimates reported in the literature. Pure N2 permeation and separation characteristics of CO2N2 mixtures through ultrathin ILMs prepared from 0.00254 cm thick ILMs of pure water by controlled evaporation of water in Celgard 2400 films have been described. The stability of fully exchanged and ultrathin ILMs of pure water in Celgard films for pure N2 permeation and separation of CO2N2 mixtures upto pressures of about 1100 cmHg and over extended periods of operation has been studied.  相似文献   

3.
Synthesis of ZrO2 and hetero-layered TiO2/ZrO2 ultrathin films was investigated by two-dimensional sol-gel process assisted by n-octadecylacetoacetate (C18AA). When a hexane solution of tetrabutoxyzirconium (TBZ) and C18AA was spread on the water surface, Zr-based gel films stabilized with C18AA were formed at the air/water interface. After deposition on substrates, the gel films were successfully transformed into ZrO2 ultrathin films by heating at 773 K for 0.5 h, the thickness of which was controllable on the order of sub-nanometer level by the number of gel-layer deposition and the molar ratio of [TBZ]/[C18AA]. Well-organized hetero-multilayers composed of ultrathin TiO2 and ZrO2 layers could be fabricated by the alternate deposition of C18AA-stabilized Ti- and Zr-gel films.  相似文献   

4.
Selective hydrogenation of olefins with water as the hydrogen source at ambient conditions is still a big challenge in the field of catalysis. Herein, the electrocatalytic hydrogenation of purely aliphatic and functionalized olefins was achieved by using graphdiyne based copper oxide quantum dots (CuxO/GDY) as cathodic electrodes and water as the hydrogen source, with high activity and selectivity in aqueous solution at high current density under ambient temperature and pressure. In particular, the sp-/sp2-hybridized graphdiyne catalyst allows the selective hydrogenation of cis-trans isomeric olefins. The chemical and electronic structure of the GDY results in the incomplete charge transfer between GDY and Cu atoms to optimize the adsorption/desorption of the reaction intermediates and results in high reaction selectivity and activity for hydrogenation reactions.  相似文献   

5.
Graphdiyne (GDY) as an emerging two‐dimensional carbon allotrope exhibits excellent performance in energy chemistry, catalytic chemistry, optoelectronics, electronics, etc. because of the unique structure combining an sp‐ and sp2‐hybrid carbon network. However, the poor solubility of pristine GDY is a major obstacle to its applications in many fields. Proposed here is a facile strategy to control the preparation of GDY quantum dots (GDY‐Py QDs), in which pyrene groups are covalently linked to GDY by using a Sonogashira cross‐coupling reaction. The as‐prepared GDY‐Py QDs, with an average diameter of about 3±0.1 nm, show superior dispersibility in many organic solvents and water. The GDY‐Py QDs display not only bright fluorescent with a high relative quantum yield (QY) of 42.82 %, but they are also well‐behaved as contrast agents in cell imaging. The GDY‐Py QDs are bestowed with high stability and non‐cytotoxicity, and exhibit long fluorescent times, and have potential for optical imaging and biomedical applications.  相似文献   

6.
The two‐dimensional carbon material graphdiyne (GDY) holds great promise as a semiconductor and porous material, however, exfoliation of bulk GDY into single‐ or few‐layered GDY in the aqueous phase remains a challenge. We report an efficient method for the damage‐free exfoliation of bulk GDY into single‐ or few‐layered GDY with high yield in an aqueous solution of inorganic salts (e.g., Li2SiF6). This was confirmed by spherical‐aberration‐corrected scanning transmission electron microscopy, scanning/transmission electron microscopy, atomic force microscopy, Fourier transform infrared/Raman spectroscopy, X‐ray photoelectron spectroscopy. The method gives high exfoliation efficiency (75 wt %) without creating additional structural defects or oxides in the exfoliated GDY. Theoretical calculations suggest that non‐covalent adsorption of the anion, diffusion of the cation, and subsequent repulsive forces between adjacent flakes are the main driving force for the efficient exfoliation.  相似文献   

7.
Peculiarities of the nucleation and growth of gold nanoparticles on adsorption layers and in ultrathin films of poly(2-vinylpyridine) (PVP) in the chemical reduction of sorbed Au(III) ions and the consequent thermal treatment of systems are studied by X-ray photoelectron spectroscopy and optical spectroscopy. It is shown that nitrogens of PVP pyridine groups coordinate gold atoms. It is revealed that, even at relatively short contact between PVP film saturated with chloroauric acid and the solution of strong reductant NaBH4, Au(III) ions are reduced to metal. As a result, quasi-metal gold particles are formed. At the same time, when exposing a PVP-Au system to the solution of weak reductant NH2OH, the process of reduction proceeds in several stages. First, Au(III) ions are reduced to Au(I) followed by the reduction to Au(0) as a result of disproportionation reaction. It is demonstrated for the first time that, upon using NH2OH, the rate of reduction, as well as the structure of prepared PVP-Au nanocomposite films depends to substantial extent on solution pH. Prolonged annealing of ultrathin nanocomposites at 150 °C, i.e., above the glass transition temperature of polymer matrix, leads to an increase in the sizes of metal particles and the formation of systems characterized by intense absorption within the 500–600-nm range due to the localized plasmon resonance of gold nanoparticles.  相似文献   

8.
利用聚苯乙烯重氮盐(PS-DAS),通过单组分逐层自组装,得到了厚度可控的超薄膜.采用紫外可见光谱,椭偏仪,原子力显微镜等对自组装膜的增长和表面形貌进行了表征,并对其交联前后的性质进行了研究.结果表明,利用逐层自组装步骤可以制备膜厚均匀增长的PS-DAS膜.组装过程中的吹干步骤对自组装膜的增长起重要作用.在加热条件下,超薄膜可以发生交联反应,得到疏水的表面。  相似文献   

9.
As a new 2D carbon material allotrope composed of sp and sp2 carbon atoms, graphdiyne (GDY) possesses a highly conjugated porous structure, easily tunable intrinsic bandgap, and various excellent properties. Such properties allowed researchers to develop methods to prepare GDY, so that it can be applied for energy storage and conversion, environmental protection, various electronic devices and so on. In this review, the authors systematically discuss the methods and strategies developed for preparing GDY and its derivatives, including the synthesis of GDY by using liquid-, solid-, and gas-phase methods, the synthesis of heteroatom-doped GDY, the preparation of GDY-based composites, and the synthesis of GDY analogues. All these preparation methods can provide the way to obtain GDY for specific studies and applications.  相似文献   

10.
The inhibition of the methanol crossover is one of the intractable challenges in the direct methanol fuel cell.The graphdiyne(GDY)with atomic-level pores shows great potential in realizing the zero-permeation of methanol molecules.In this paper,an ultrathin layer of nitrogen-rich GDY film with a high nitrogen content is largely prepared and readily used for retarding the methanol permeation in the state-of-the-art commercial Nafion membrane.The high N-content in this porous GDY nanofilm remarkably increases the selective suppression in methanol transfer,and single-layer GDY film can efficiently prevent 43%methanol crossover and the value of the double-layer GDY film can be high up to 69%.The power performance and the long-term stability of the cell are obviously improved due to the reduced methanol crossover.  相似文献   

11.
Adhesive ultrathin polypyrrole films were deposited on Si/SiO2 substrates modified with the new adhesion promoter 11-(Pyrrol-1-yl Undecyl) TrichloroSilane (PUTS). The oxidation potential of PUTS in solution was determined electrochemically by cyclic voltammetry. Self-assembled monolayers of PUTS were investigated by cyclic voltammetry, contact angle measurements, ellipsometry, and X-ray photoelectron spectroscopy. Several oxidants for the deposition of pyrrole on adhesion promoter modified substrates were tested and a strong dependence on the obtained film morphology was found. It was possible to deposit chemically ultrathin polypyrrole films on insulating substrates.  相似文献   

12.
Graphdiyne(GDY)is a kind of two-dimensional carbon nanomaterial with specific configurations of sp and sp2 carbon atoms.The key progress in the preparation and application of GDY is bringing carbon materials to a brand-new level.Here,the various properties and structures of GDY are introduced,including the existing strategies for the preparation and modification of GDY.In particular,GDY has gradually emerged in the field of life sciences with its unique properties and performance,therefore,the development of biomedical applications of GDY is further summarized.Finally,the challenges of GDY toward future biomedical applications are discussed.  相似文献   

13.
The absolute heat capacity and glass transition temperature (Tg) of unsupported ultrathin films were measured with differential scanning calorimetry with the step-scan method in an effort to further examine the thermodynamic behavior of glass-forming materials on the nanoscale. Films were stacked in layers with multiple preparation methods. The absolute heat capacity in both the glass and liquid states decreased with decreasing film thickness, and Tg also decreased with decreasing film thickness. The magnitude of the Tg depression was closer to that observed for films supported on rigid substrates than that observed for freely standing films. The stacked thin films regained bulk behavior after the application of pressure at a high temperature. The effects of various preparation methods were examined, including the use of polyisobutylene as an interleaving layer between the polystyrene films. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3518–3527, 2006  相似文献   

14.
Two Pt single‐atom catalysts (SACs) of Pt‐GDY1 and Pt‐GDY2 were prepared on graphdiyne (GDY)supports. The isolated Pt atoms are dispersed on GDY through the coordination interactions between Pt atoms and alkynyl C atoms in GDY, with the formation of five‐coordinated C1‐Pt‐Cl4 species in Pt‐GDY1 and four‐coordinated C2‐Pt‐Cl2 species in Pt‐GDY2. Pt‐GDY2 shows exceptionally high catalytic activity for the hydrogen evolution reaction (HER), with a mass activity up to 3.3 and 26.9 times more active than Pt‐GDY1 and the state‐of‐the‐art commercial Pt/C catalysts, respectively. Pt‐GDY2 possesses higher total unoccupied density of states of Pt 5d orbital and close to zero value of Gibbs free energy of the hydrogen adsorption (|Δ |) at the Pt active sites, which are responsible for its excellent catalytic performance. This work can help better understand the structure–catalytic activity relationship in Pt SACs.  相似文献   

15.
Pure silica nanoscale zeolite BETA with monomodal particle size distribution was synthesized from a colloidal precursor solution and successfully applied for the preparation of hydrophobic ultrathin films on silicon wafers via spin coating.  相似文献   

16.
A facile strategy was reported to synthesize and assemble a stable ultrathin film of Ni(OH)2 nanoparticles at gas/liquid interface where the aqueous phase contained Ni2+ and the organic phase was composed of triethylamine toluene solution. The ultrathin film of Ni(OH)2 nanoparticles that precipitated at the interface was transferred onto the electrode surface for the electrocatalysis of bio-thiols and selective electroanalysis of cysteine. The preparation of Ni(OH)2 ultrathin film and its transfer to an electrode substrate is very simple. The obtained Ni(OH)2 ultrathin film modified electrodes are stable, showing high electrochemical oxidation toward bio-thiols and good selectivity toward cysteine in phosphate buffered solution of pH 7.5.  相似文献   

17.
To develop stimuli-responsive ultrathin polymer films on a solid substrate, a novel photo-cross-linkable polymer with both temperature- and pH-responsive properties was prepared. The photoreactive 4-aminobenzophenone (BP) was introduced onto the side groups of poly(N-isopropylaclylamide-co-2-carboxyisopropylaclylamide) [poly(NIPAAm-co-CIPAAm)]. This copolymer was designed for highly random sequences of comonomers. After the formation of spin-coated polymer films on a solid substrate, UV-light irradiation started the cross-linking reaction. The spin-coating processes and stability of the polymer films were quantitatively monitored by a quartz crystal microbalance (QCM), and the thickness was estimated using an atomic force microscope (AFM). These measurements confirmed the formation of a very plain polymer film, and the film thickness was precisely controlled by the concentration of the polymer solution used for spin coating. Moreover, the obtained films showed a high stability due to the cross-liking reaction and UV irradiation. Cyclic voltammetry using potassium ferricyanide revealed that the ions could permeate the photo-cross-linked ultrathin polymer films. The permeability of the ultrathin hydrogel films was dramatically changed by varying the pH and temperature of the aqueous media. These observations suggest that the preparation of isopropylacrylamide-based stimuli-responsive ultrathin hydrogel films is possible.  相似文献   

18.
Two-dimensional graphdiyne (GDY) formed by sp and sp2 hybridized carbon has been found to be an efficient toxic gas sensing material by density functional theory (DFT). However, little experimental research concerning its gas sensing capability has been reported owing to the complex preparation process and harsh experimental conditions. Herein, porous GDY nanosheets are successfully synthesized through a facile solvothermal synthesis technique by using CuO microspheres (MSs) as both template and source of catalyst. The porous GDY nanosheets exhibit a broadband optical absorption, rendering it suitable for the light-driven optoelectronic gas sensing applications. The GDY-based gas sensor was demonstrated to have excellent reversible to NO2 behaviors at 25 °C for the first time. More importantly, higher response value and faster response-recovery time once exposed to NO2 gas molecules are achieved by the illumination of UV light. In this way, our work paves the way for the exploration of GDY-based gas detection experimentally.  相似文献   

19.
Anchoring transition metal (TM) atoms on suitable substrates to form single-atom catalysts (SACs) is a novel approach to constructing electrocatalysts. Graphdiyne with sp−sp2 hybridized carbon atoms and uniformly distributed pores have been considered as a potential carbon material for supporting metal atoms in a variety of catalytic processes. Herein, density functional theory (DFT) calculations were performed to study the single TM atom anchoring on graphdiyne (TM1−GDY, TM=Sc, Ti, V, Cr, Mn, Co and Cu) as the catalysts for CO2 reduction. After anchoring metal atoms on GDY, the catalytic activity of TM1−GDY (TM=Mn, Co and Cu) for CO2 reduction reaction (CO2RR) are significantly improved comparing with the pristine GDY. Among the studied TM1−GDY, Cu1−GDY shows excellent electrocatalytic activity for CO2 reduction for which the product is HCOOH and the limiting potential (UL) is −0.16 V. Mn1−GDY and Co1−GDY exhibit superior catalytic selectivity for CO2 reduction to CH4 with UL of −0.62 and −0.34 V, respectively. The hydrogen evolution reaction (HER) by TM1−GDY (TM=Mn, Co and Cu) occurs on carbon atoms, while the active sites of CO2RR are the transition metal atoms . The present work is expected to provide a solid theoretical basis for CO2 conversion into valuable hydrocarbons.  相似文献   

20.
Palladium‐supported catalysts are complex assemblies with a challenging preparation. Minor changes in their preparation conditions can affect the activity, selectivity and lifetime of these catalysts. PdCuFe nanoparticle (NP) thin films were supported on reduced graphene oxide (RGO) by the reduction of the organometallic complex [PdCl2‌(cod)] (cod = cis ,cis ‐1,5‐cyclooctadiene), and [Cu(acac)2] and [Fe(acac)3] (acac = acetylacetonate) complexes at a toluene–water interface. We have investigated the application of the liquid–liquid interface method for preparing ultrathin films of catalysts and have evaluated the catalytic activity of the prepared NPs for the Sonogashira coupling reaction in micelle media. Also, we have investigated the effect of the addition of iron on the morphology, size and catalytic activity of PdCu/RGO NPs. Our study shows that both of the prepared catalysts (PdCu/RGO and PdCuFe/RGO) are efficient and recoverable catalysts for the Sonogashira carbon–carbon coupling reaction. This method has advantages compared to other routes, such as short reaction times, high to excellent yields, facile and low‐cost method for the preparation of the catalysts, and easy separation and reusability of the catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号