首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrogen-bridged oligosilanylsilyl borates 8 [B(C6F5)4], 9 [B(C6F5)4] and diborates 10 [B(C6F5)4]2 have been prepared by hydride transfer between α-ω-dihydrido- ( 11 ) and branched tetrahydrido-oligosilanes ( 13 ) and trityl cation. The obtained cyclic intramolecularly stabilized silylium ions 8 , 9 and bissilylium ion 10 were characterized by low temperature NMR spectroscopy supported by the results of density functional calculations. The branched Si−H−Si monocation 9 undergoes at low temperatures a fast degenerate rearrangement, which exchanges the Si−H groups with a barrier of 31 kJ mol−1 via an antarafacial transition state. Reaction of the branched monocation 9 with a second equivalent of trityl cation or of the branched oligosilane 13 with two equivalents of trityl cation, gives at −80 °C the corresponding bissilylium ion 10 , an example for a new class of highly reactive poly-Lewis acids.  相似文献   

2.
Reduction of [TaCl5] by six equivalents of alkali metal naphthalenide in 1,2-dimethoxyethane at −60°C followed by treatment with gaseous PF3 provides the first homoleptic phosphane complex containing tantalum in the −1 oxidation state, [Ta(PF3)6]. This can be protonated by concentrated sulfuric acid to yield the previously unknown highly acidic and volatile hydride [HTa(PF3)6]. An improved normal-pressure synthesis of [Ta(CO)6] is described. Reduction of the latter species by sodium in liquid ammonia gives the carbonyl trianion [Ta(CO)5]3− which undergoes monoprotonation and stannylation to form [HTa(CO)5]2− and [Ph3SnTa(CO)5]2−, respectively. The hydride is a useful precursor to [(Ph3PAu)3Ta(CO)5], the only known gold cluster of tantalum.  相似文献   

3.
Superelectrophilic monoanions [B12(BO)11] and [B12(OBO)11], generated from stable dianions [B12(BO)12]2− and [B12(OBO)12]2−, show great potential for binding with noble gases (Ngs). The binding energies, quantum theory of atoms in molecules (QTAIM), natural population analysis (NPA), energy decomposition analysis (EDA), and electron localization function (ELF) were carried out to understand the B−Ng bond in [B12(BO)11Ng] and [B12(OBO)11Ng]. The calculated results reveal that heavier noble gases (Ar, Kr, and Xe) bind covalently with both [B12(BO)11] and [B12(OBO)11] with large binding energies, making them potentially feasible to be synthesized. Only [B12(OBO)11] could form a covalent bond with helium or neon but the small binding energy of [B12(OBO)11He] may pose a challenge for its experimental detection.  相似文献   

4.
A series of molecular group 2 polyphosphides has been synthesized by using air-stable [Cp*Fe(η5-P5)] (Cp*=C5Me5) or white phosphorus as polyphosphorus precursors. Different types of group 2 reagents such as organo-magnesium, mono-valent magnesium, and molecular calcium hydride complexes have been investigated to activate these polyphosphorus sources. The organo-magnesium complex [(DippBDI−Mg(CH3))2] (DippBDI={[2,6-iPr2C6H3NCMe]2CH}) reacts with [Cp*Fe(η5-P5)] to give an unprecedented Mg/Fe-supramolecular wheel. Kinetically controlled activation of [Cp*Fe(η5-P5)] by different mono-valent magnesium complexes allowed the isolation of Mg-coordinated formally mono- and di-reduced products of [Cp*Fe(η5-P5)]. To obtain the first examples of molecular calcium-polyphosphides, a molecular calcium hydride complex was used to reduce the aromatic cyclo-P5 ring of [Cp*Fe(η5-P5)]. The Ca-Fe-polyphosphide is also characterized by quantum chemical calculations and compared with the corresponding Mg complex. Moreover, a calcium coordinated Zintl ion (P7)3− was obtained by molecular calcium hydride mediated P4 reduction.  相似文献   

5.
The first deprotonation of a borohydride anion was achieved by treatment of [BH(CN)3] with strong non‐nucleophilic bases, which resulted in the formation of alkali‐metal salts of the tricyanoborate dianion B(CN)32− in up to 97 % yield and 99.5 % purity. [BH(CN)3] is less acidic than (Me3Si)2NH but a stronger acid than i Pr2NH. Less sterically hindered, more nucleophilic bases such as PhLi and MeLi mostly attack a CN group under formation of imine dianions [RC(N)B(CN)3]2−, which can be hydrolyzed to ketones of the [RC(O)B(CN)3] type. The boron‐centered nucleophile B(CN)32− reacts with CO2 and CN+ reagents to give salts of the [B(CN)3CO2]2− dianion and the tetracyanoborate anion [B(CN)4], respectively, in excellent yields.  相似文献   

6.
[B4O5(OH)42−] is a representative borate anion with a double six-membered ring structure, but there is limited knowledge about the hydrolysis mechanisms of [B4O5(OH)42−]. Density functional theory-based calculations show that the tetraborate ion undergoes three-step hydrolysis to form [B(OH)4] and an ring intermediate, [B3O2(OH)6]. Other new structures, such as linear trimer, branched tetraborate, analogous linear tetraborate, are observed, but they are not stable in neutral systems and change to ring structures. [B3O2(OH)6] hydrolyzes to [B(OH)4] and [B(OH)3] in the last two steps. The structure of borate anion and the coordination environment of the bridge oxygen atom control the hydrolysis process. [B4O5(OH)42−] always participates in the hydrolysis reaction, even with a decrease in concentration. [B3O3(OH)4], [B(OH)4], and [B(OH)3] have different roles in “water-poor” and “water-rich” zones. Concentration and pH of solution are the key factors that affect the distribution of borate ions.  相似文献   

7.
It is common and chemically intuitive to assign cations electrophilic and anions nucleophilic reactivity, respectively. Herein, we demonstrate a striking violation of this concept: The anion [B12Cl11] spontaneously binds to the noble gases (Ngs) xenon and krypton at room temperature in a reaction that is typical of “superelectrophilic” dications. [B12Cl11Ng] adducts, with Ng binding energies of 80 to 100 kJ mol−1, contain B−Ng bonds with a substantial degree of covalent interaction. The electrophilic nature of the [B12Cl11] anion is confirmed spectroscopically by the observation of a blue shift of the CO stretching mode in the IR spectrum of [B12Cl11CO] and theoretically by investigation of its electronic structure. The orientation of the electric field at the reactive site of [B12Cl11] results in an energy barrier for the approach of polar molecules and facilitates the formation of Ng adducts that are not detected with reactive cations such as [C6H5]+. This introduces the new chemical concept of “dipole-discriminating electrophilic anions.”  相似文献   

8.
By means of cyclic voltammetry (CV) and DFT calculations, it was found that the electron-acceptor ability of 2,1,3-benzochalcogenadiazoles 1 – 3 (chalcogen: S, Se, and Te, respectively) increases with increasing atomic number of the chalcogen. This trend is nontrivial, since it contradicts the electronegativity and atomic electron affinity of the chalcogens. In contrast to radical anions (RAs) [ 1 ].− and [ 2 ].−, RA [ 3 ].− was not detected by EPR spectroscopy under CV conditions. Chemical reduction of 1 – 3 was performed and new thermally stable RA salts [K(THF)]+[ 2 ].− ( 8 ) and [K(18-crown-6)]+[ 2 ].− ( 9 ) were isolated in addition to known salt [K(THF)]+[ 1 ].− ( 7 ). On contact with air, RAs [ 1 ].− and [ 2 ].− underwent fast decomposition in solution with the formation of anions [ECN], which were isolated in the form of salts [K(18-crown-6)]+[ECN] ( 10 , E=S; 11 , E=Se). In the case of 3 , RA [ 3 ].− was detected by EPR spectroscopy as the first representative of tellurium–nitrogen π-heterocyclic RAs but not isolated. Instead, salt [K(18-crown-6)]+2[ 3 -Te2]2− ( 12 ) featuring a new anionic complex with coordinate Te−Te bond was obtained. On contact with air, salt 12 transformed into salt [K(18-crown-6)]+2[ 3 -Te4- 3 ]2− ( 13 ) containing an anionic complex with two coordinate Te−Te bonds. The structures of 8 – 13 were confirmed by XRD, and the nature of the Te−Te coordinate bond in [ 3 -Te2]2− and [ 3 -Te4- 3 ]2− was studied by DFT calculations and QTAIM analysis.  相似文献   

9.
Quantum chemistry calculations predict that besides the reported single metal anion Pt, Ni can also mediate the co-conversion of CO2 and CH4 to form [CH3−M(CO2)−H] complex, followed by transformation to C−C coupling product [H3CCOO−M−H] ( A ), hydrogenation products [H3C−M−OCOH] ( B ) and [H3C−M−COOH]. For Pd, a fourth product channel leading to PdCO2…CH4 becomes more competitive. For Ni, the feed order must be CO2 first, as the weaker donor-acceptor interaction between Ni and CH4 increases the C−H activation barrier, which is reduced by [Ni−CO2]. For Ni/Pt, the highly exothermic products A and B are similarly stable with submerged barrier that favors B . The smaller barrier difference between A and B for Ni suggests the C−C coupling product is more competitive in the presence of Ni than Pt. The charge redistribution from M is the driving force for product B channel. This study adds our understanding of single atomic anions to activate CH4 and CO2 simultaneously.  相似文献   

10.
Fragmentation dynamics of ligated coinage metal clusters reflects their structural and bonding properties. So far methodological challenges limited probing structures of the fragments. Herein, we resolve the geometric structures of the primary fragments of [Ag29L12]3−, i.e. [Ag24L9]2−, [Ag19L6] and [Ag5L3] (L is 1,3-benzene dithiolate). For this, we used trapped ion mobility mass spectrometry to determine collision cross sections of the fragments and compared them to structures calculated by density functional theory. We also report that following two sequential [Ag5L3] elimination steps, further dissociation of [Ag19L6] also involves a new channel of Ag2 loss and Ag−S and C−S bond cleavages. This reflects a competition between retaining the electronic stability of 8 e superatom cluster cores and increasing steric strain of ligands and staples. These results are also of potential interest for future soft-landing deposition studies aimed at probing catalytic behavior of Ag clusters on supports.  相似文献   

11.
The controlled reaction of Na and Cs, two alkali metals of different ionic sizes and binding abilities, with sumanene (C21H12) affords a novel type of organometallic sandwich [Cs(C21H11)2], which crystallized as a solvent‐separated ion pair with a [Na(18‐crown‐6)(THF)2]+ cation (where THF=tetrahydrofuran). The unprecedented double concave encapsulation of a metal ion by two bowl‐shaped sumanenyl anions in [Cs(C21H11)2] was revealed crystallographically. Evaluation of bonding and energetics of the remarkable product was accomplished computationally (B2PLYP‐D/TZVP/ZORA), providing insights into its formation.  相似文献   

12.
The metalated ylide YNa [Y=(Ph3PCSO2Tol)] was employed as X,L‐donor ligand for the preparation of a series of boron cations. Treatment of the bis‐ylide functionalized borane Y2BH with different trityl salts or B(C6F5)3 for hydride abstraction readily results in the formation of the bis‐ylide functionalized boron cation [Y−B−Y]+ ( 2 ). The high donor capacity of the ylide ligands allowed the isolation of the cationic species and its characterization in solution as well as in solid state. DFT calculations demonstrate that the cation is efficiently stabilized through electrostatic effects as well as π‐donation from the ylide ligands, which results in its high stability. Despite the high stability of 2 [Y−B−Y]+ serves as viable source for the preparation of further borenium cations of type Y2B+←LB by addition of Lewis bases such as amines and amides. Primary and secondary amines react to tris(amino)boranes via N−H activation across the B−C bond.  相似文献   

13.
Reactions of the BH4 anion with equimolar amounts of HN(NO2)2 or of BH3⋅THF with K[N(NO2)2] produced a mono‐substituted [BH3N(NO2)2] anion, which contains a B−N connected dinitramido ligand. The reaction of BH4 with two equivalents of HN(NO2)2 afforded the di‐substituted borate anion consisting of two isomers, one with both nitramido ligands attached to B through N and the other one with one ligand attached through N and the other one through O. The disubstituted dinitramidoborates are marginally stable under ambient conditions, and the isomer with two N‐connected ligands was characterized by its crystal structure. A tri‐substituted borate was tentatively identified by NMR in the reaction of BH4 with a large excess of HN(NO2)2. All of the anions are highly energetic. Theoretical calculations show that the energy differences between the B−N and B−O tautomers are small, explaining the formation of both.  相似文献   

14.
The vibrational frequencies of some octahedral species ([SbX6], [SbX6]3−, [NbX6], [NbX6]2−, [TaX6], [TaX6]2−; X = F, Cl, Br, I) have been calculated by means of six extrapolated molecular force constants using some linear relations between the force constants and the reciprocal radii of the ligands. A statistical treatment of these correlations allowed the calculation of error limits for a probability of 90%. The computations of the force constants and vibrational frequencies were based on the GF-matrix method.  相似文献   

15.
Diborane(6) dianions with substituents that are bonded to boron via carbon are very reactive and therefore only a few examples are known. Diborane(6) derivatives are the simplest catenated boron compounds with an electron‐precise B–B σ‐bond that are of fundamental interest and of relevance for material applications. The homoleptic hexacyanodiborane(6) dianion [B2(CN)6]2− that is chemically very robust is reported. The dianion is air‐stable and resistant against boiling water and anhydrous hydrogen fluoride. Its salts are thermally highly stable, for example, decomposition of (H3O)2[B2(CN)6] starts at 200 °C. The [B2(CN)6]2− dianion is readily accessible starting from 1) B(CN)32− and an oxidant, 2) [BF(CN)3] and a reductant, or 3) by the reaction of B(CN)32− with [BHal(CN)3] (Hal=F, Br). The latter reaction was found to proceed via a triply negatively charged transition state according to an SN2 mechanism.  相似文献   

16.
Molten salt electrolysis is a vital technique to produce high-purity lanthanide metals and alloys. However, the coordination environments of lanthanides in molten salts, which heavily affect the related redox potential and electrochemical properties, have not been well elucidated. Here, the competitive coordination of chloride and fluoride anions towards lanthanide cations (La3+ and Nd3+) is explored in molten LiCl-KCl-LiF-LnCl3 salts using electrochemical, spectroscopic, and computational approaches. Electrochemical analyses show that significant negative shifts in the reduction potential of Ln3+ occur when F concentration increases, indicating that the F anions interact with Ln3+ via substituting the coordinated Cl anions, and confirm [LnClxFy]3−x−y (ymax=3) complexes are prevailing in molten salts. Spectroscopic and computational results on solution structures further reveal the competition between Cl and F anions, which leads to the formation of four distinct Ln(III) species: [LnCl6]3−, [LnCl5F]3−, [LnCl4F2]3− and [LnCl4F3]4−. Among them, the seven-coordinated [LnCl4F3]4− complex possesses a low-symmetry structure evidenced by the pattern change of Raman spectra. After comparing the polarizing power (Z/r) among different metal cations, it was concluded that Ln−F interaction is weaker than that between transition metal and F ions.  相似文献   

17.
The title salt, [Zn(C2N2H8)3]2[CdI4]I2, conventionally abbreviated [Zn(en)3]2[CdI4]I2, where en is ethyl­enediamine, contains discrete [Zn(en)3]2+ cations and [CdI4]2− anions with distorted octa­hedral and nearly tetra­hedral geometries, respectively, as well as uncoordinated I ions. The cation and the free I anion lie on twofold rotation axes and the [CdI4]2− anion lies on a axis in the space group I2d. The structure exhibits numerous weak inter‐ionic hydrogen bonds of two types, viz. N—H⋯I(free ion) and N—H⋯I([CdI4]2−), which support the resulting three‐dimensional framework.  相似文献   

18.
A series of five ternary octanuclear iodine-bromine-chlorine interhalides, [I2Br2Cl4]2− ( 1 ), [I3BrCl4]2− ( 2 ), [I4Br2Cl2]2− ( 3 ), [I2Br4Cl2]2− ( 4 ) and [I3Br3Cl2]2− ( 5 ), have been rationally constructed in two steps. Firstly, addition of a dihalogen (ICl or IBr) to the triaminocyclopropenium chloride salt [C3(NEt2)3]Cl forms the corresponding trihalide salt with [ICl2] or [BrICl] anions, respectively. Secondly, addition of a half-equivalent of a second dihalogen, followed by crystallization at low temperature, gives the corresponding octahalide: addition of Br2 and IBr to [ICl2] gives 1 and 2 , respectively, whereas addition of I2, Br2 and IBr to [BrICl] gives 3 , 4 and 5 , respectively. The five octahalides were characterized by X-ray crystallography and far–IR spectroscopy.  相似文献   

19.
20.
The hydrogen-release reaction of a complex transition metal hydride, LaMg2NiH7, composed of La3+, 2×Mg2+, [NiH4]4− and 3×H, was studied by thermal analyses, powder X-ray, and neutron diffraction and inelastic neutron scattering. Upon heating, LaMg2NiH7 released hydrogen at approximately 567 K and decomposed into LaH2−3 and Mg2Ni. Before the reaction, covalently bound hydrogen (Hc°v.) in [NiH4]4− exhibited a larger atomic displacement than H, although a weakening of the chemical bonds around [NiH4]4− and H was observed. These results indicate the precursor phenomenon of a hydrogen-release reaction, wherein there is a large atomic displacement of Hc°v. that induces the hydrogen-release reaction rather than H. As an isothermal reaction, LaMg2NiH7 formed LaMg2NiH2.4 at 503 K in vacuum for 48 h, and LaMg2NiH2.4 reacted with hydrogen to reform LaMg2NiH7 at 473 K under 1 MPa of H2 gas pressure for 10 h. These results revealed that LaMg2NiH7 exhibited partially reversible hydrogen-release and uptake reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号