首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Prodrug strategies have been proven to be a very effective way of addressing delivery problems. Much of the chemistry in prodrug development relies on the ability to mask an appropriate functional group, which can be removed under appropriate conditions. However, developing organic prodrugs of gasotransmitters represent unique challenges. This is especially true with carbon monoxide, which does not have an easy “handle” for bioreversible derivatization. By taking advantage of an intramolecular Diels–Alder reaction, we have developed a prodrug strategy for preparations of organic CO prodrugs that are stable during synthesis and storage, and yet readily release CO with tunable release rates under near physiological conditions. The effectiveness of the CO prodrug system in delivering a sufficient quantity of CO for possible therapeutic applications has been studied using a cell culture anti‐inflammatory assay and a colitis animal model. These studies fully demonstrate the proof of concept, and lay a strong foundation for further medicinal chemistry work in developing organic CO prodrugs.  相似文献   

2.
The acid-cleavable amphiphilic prodrug DOX-PEG-DOX self-assemble to form nanoparticles and enter the cell by endocytosis for the pH-triggered intracellular delivery of DOX.  相似文献   

3.
Cancer‐associated inflammation induces tumor progression to the metastatic stage, thus indicating that a chemo‐anti‐inflammatory strategy is of interest for the management of aggressive cancers. The platinum(IV) prodrug Platin‐A was designed to release cisplatin and aspirin to ameliorate the nephrotoxicity and ototoxicity caused by cisplatin. Platin‐A exhibited anticancer and anti‐inflammatory properties which are better than a combination of cisplatin and aspirin. These findings highlight the advantages of combining anti‐inflammatory treatment with chemotherapy when both the drugs are delivered in the form of a single prodrug.  相似文献   

4.
Carboxylesterase, a necessary enzyme in various mammalian cells, has been employed in various biological applications. Herein, we designed and synthesized a novel carboxylesterase-based prodrug, which can realize simultaneous drug-release imaging and cancer chemotherapy. This prodrug comprises three parts:coumarin as the fluorophore and the cleavable architecture, chlorambucil as the anticancer drug, and acetyl group as the enzyme-responsive unit. The presence of carboxylesterase leads to the activation of coumarin fluorescence, and this fluorescence serves as the reporting signal for assessing the enzyme level and drug release. Moreover, the prodrug was incorporated in liposome for monitoring drug release and chemotherapeutic effect in living cells. Upon internalization by HeLa cells, the prodrug can release chlorambucil and exhibit high cytotoxicity. This approach may provide some helpful insights for enhancing therapeutic effect and tracking the release of prodrug.  相似文献   

5.
PEGylated prodrug, covalent attaching polyethylene glycol (PEG) polymer chains to therapeutic drugs, is one of the most promising techniques to improve the water-solubility, stability, and therapeutic effect of drugs. In this study, three PEGylated acid-sensitive prodrugs DOX-PEG-DOX with different molecular weights, were prepared via Schiff-base reaction between aldehyde-modified PEG and the amino groups of doxorubicin (DOX). This kind of amphiphilic polymeric prodrug could be self-assemble into nanoparticles in aqueous solution. The average particle size and morphologies of the prodrug nanoparticles under different pH conditions were observed by dynamic light scattering (DLS) and transmission electron microscopy (TEM), respectively. It turned out that the nanoparticles could be kept stable in the physiological environment, but degraded in acidic medium. Subsequently, we also investigated in vitro drug release behavior and found that the prodrug had acid-sensitive property. The cytotoxicity and intracellular uptake assays revealed that the prodrugs could rapidly internalized by HeLa or HepG2 cells to release DOX and effectively inhibited the proliferation of the tumor cells, which have the potential for use in cancer therapy.  相似文献   

6.
Radiation-induced cleavage for controlled release in vivo is yet to be established. We demonstrate the use of 3,5-dihydroxybenzyl carbamate (DHBC) as a masking group that is selectively and efficiently removed by external radiation in vitro and in vivo. DHBC reacts mainly with hydroxyl radicals produced by radiation to afford hydroxylation at para/ortho positions, followed by 1,4- or 1,6-elimination to rescue the functionality of the client molecule. The reaction is rapid and can liberate functional molecules under physiological conditions. This controlled-release platform is compatible with living systems, as demonstrated by the release of a rhodol fluorophore derivative in cells and tumor xenografts. The combined benefits of the robust caging group, the good release yield, and the independence of penetration depth make DHBC derivatives attractive chemical caging moieties for use in chemical biology and prodrug activation.  相似文献   

7.
The therapy of non-small lung cancer(NSCLC) is limited by wide metastasis and chemotherapy resistance, herein, we present a new cancer-targeting prodrug PBG with the integration of real-time fluorescence visualization. The potent anticancer drug Gefitinib conjugates a biotin recognition ligand yielding the prodrug PBG via a GSH-activatable disulfide bond linker. Once coupling a near-infrared azo-BODIPY fluorophore into the molecular structure of PBG, we obtain its fluorescent theranostic TBG. Th...  相似文献   

8.
Dual- or multi-action PtIV prodrugs represent a new generation of platinum anticancer drugs. The important property of these PtIV prodrugs is that their antitumor action combines several different mechanisms owing to the presence of biologically active axial ligands. This work describes the synthesis and some biological properties of a “triple-action” prodrug that releases in cancer cells cisplatin and two different epigenetically acting moieties, octanoate and phenylbutyrate. It is demonstrated, with the aid of modern methods of molecular and cellular biology and pharmacology, that the presence of three different functionalities in a single molecule of the PtIV prodrug results in a selective and high potency in tumor cells including those resistant to cisplatin [the IC50 values in the screened malignant cell lines ranged from as low as 9 nm (HCT-116) to 74 nm (MDA-MB-231)]. It is also demonstrated that cellular activation of the PtIV prodrug results in covalent modification of DNA through the release of the platinum moiety accompanied by inhibition of the activity of histone deacetylases caused by phenylbutyrate and by global hypermethylation of DNA by octanoate. Thus, the PtIV prodrug introduced in this study acts as a true “multi-action” prodrug, which is over two orders of magnitude more active than clinically used cisplatin, in both 2D monolayer culture and 3D spheroid cancer cells.  相似文献   

9.
Sixteen cationic prodrugs of the antitumor alkylphospholipid (APL) erufosine were rationally synthesized to provide original gene delivery reagents with improved cytotoxicity profile. The DNA complexation properties of these cationic lipids were determined and associated transfection rates were measured. Furthermore, the self-assembly properties of the pro-erufosine compounds were investigated and their critical aggregation concentration was determined. Their hydrolytic stability under pH conditions mimicking the extracellular environment and the late endosome milieu was measured. Hemolytic activity and cytotoxicity of the compounds were investigated. The results obtained in various cell lines demonstrate that the prodrugs of erufosine display antineoplastic activity similar to that of the parent antitumor drug but are not associated with hemolytic toxicity, which is a dose-limiting side effect of APLs and a major obstacle to their use in anticancer therapeutic regimen. Furthermore, by using lipoplexes prepared from a prodrug of erufosine and a plasmid DNA encoding a pro-apoptotic protein (TRAIL), evidence was provided for selective cytotoxicity towards tumor cells while nontumor cells were resistant. This study demonstrates that the combination approach involving well tolerated erufosine cationic prodrugs and cancer gene therapy holds significant promise in tumor therapy.  相似文献   

10.
The cytosolic conversion of therapeutically relevant nucleosides into bioactive triphosphates is often hampered by the inefficiency of the first kinase‐mediated step. Nucleoside monophosphate prodrugs can be used to bypass this limitation. Herein we describe a novel cyclic‐disulfide class of nucleoside monophosphate prodrugs with a cytosol‐specific, reductive release trigger. The key event, a charge‐dissipating reduction‐triggered cyclodeesterification leads to robust cytosolic production of the cyclic 3′,5′‐monophosphate for downstream enzymatic processing. The antiviral competence of the platform was demonstrated with an O‐benzyl‐1,2‐dithiane‐4,5‐diol ester of 2′‐C‐methyluridine‐3′,5′‐phosphate. Both in vitro and in vivo comparison with the clinically efficacious ProTide prodrug of 2′‐deoxy‐2′‐α‐fluoro‐β‐C‐methyluridine is provided. The cytosolic specificity of the release allows for a wide range of potential applications, from tissue‐targeted drug delivery to intracellular imaging.  相似文献   

11.
There is growing consensus that the clinical therapeutic efficacy of some chemotherapeutic agents depends on their off‐target immune‐modulating effects. Pt anticancer drugs have previously been identified to be potent immunomodulators of both the innate and the adaptive immune system. Nevertheless, there has been little development in the rational design of Pt‐based chemotherapeutic agents to exploit their immune‐activating capabilities. The FPR1/2 formyl peptide receptors are highly expressed in immune cells, as well as in many metastatic cancers. Herein, we report a rationally designed multimodal PtIV prodrug containing a FPR1/2‐targeting peptide that combines chemotherapy with immunotherapy to achieve therapeutic synergy and demonstrate the feasibility of this approach.  相似文献   

12.
A coumarin-based prodrug system has been recently developed in our laboratory for the preparation of esterase-sensitive prodrugs of amines, peptides, and peptidomimetics. The drug release rates from this prodrug system were found to be dependent on the structural features of the drug moiety. In certain cases, the release can be undesirably slow for drugs that are secondary amines with relatively high pKa's. Aimed at finding ways to manipulate the release rates to suit the need of different drugs, we have examined the effect of the phenyl ring substitutions on the release kinetics of such prodrugs and found that appropriately positioned alkyl substituents on the phenyl ring could help to facilitate the release by as much as 16-fold. Therefore, introduction of alkyl substituents on the phenyl ring should allow us to manipulate the release rates and, therefore, time profiles for different drugs.  相似文献   

13.
Controlled and efficient activation is the crucial aspect of designing an effective prodrug. Herein we demonstrate a proof of concept for a light activatable prodrug with desired organelle specificity. Mertansine, a benzoansamacrolide, is an efficient microtubule-targeting compound that binds at or near the vinblastine-binding site in the mitochondrial region to induce mitotic arrest and cell death through apoptosis. Despite its efficacy even in the nanomolar level, this has failed in stage 2 of human clinical trials owing to the lack of drug specificity and the deleterious systemic toxicity. To get around this problem, a recent trend is to develop an antibody-conjugatable maytansinoid with improved tumor/organelle-specificity and lesser systematic toxicity. Endogenous CO is recognized as a regulator of cellular function and for its obligatory role in cell apoptosis. CO blocks the proliferation of cancer cells and effector T cells, and the primary target is reported to be the mitochondria. We report herein a new mitochondria-specific prodrug conjugate (Pro-DC) that undergoes a photocleavage reaction on irradiation with a 400 nm source (1.0 mW cm−2) to induce a simultaneous release of the therapeutic components mertansine and CO along with a BODIPY derivative (BODIPY(PPH3)2) as a luminescent marker in the mitochondrial matrix. The efficacy of the process is demonstrated using MCF-7 cells and could effectively be visualized by probing the intracellular luminescence of BODIPY(PPH3)2. This provides a proof-of-concept for designing a prodrug for image-guided combination therapy for mainstream treatment of cancer.

Simultaneous release of two therapeutic reagents, mertansine and CO through photo-induced cleavage of a mitochondria-specific prodrug with improved drug efficacy.  相似文献   

14.
Photo/pH dual‐responsive amphiphilic diblock copolymers with alkyne functionalized pendant o‐nitrobenzyl ester group are synthesized using poly(ethylene glycol) as a macroinitiator. The pendant alkynes are functionalized as aldehyde groups by the azide‐alkyne Huisgen cycloaddition. The anticancer drug doxorubicin (DOX) molecules are then covalently conjugated through acid‐sensitive Schiff‐base linkage. The resultant prodrug copolymers self‐assemble into nanomicelles in aqueous solution. The prodrug nanomicelles have a well‐defined morphology with an average size of 20–40 nm. The dual‐stimuli are applied individually or simultaneously to study the release behavior of DOX. Under UV light irradiation, nanomicelles are disassembled due to the ONB ester photocleavage. The light‐controlled DOX release behavior is demonstrated using fluorescence spectroscopy. Due to the pH‐sensitive imine linkage the DOX molecules are released rapidly from the nanomicelles at the acidic pH of 5.0, whereas only minimal amount of DOX molecules is released at the pH of 7.4. The DOX release rate is tunable by applying the dual‐stimuli simultaneously. In vitro studies against colon cancer cells demonstrate that the nanomicelles show the efficient cellular uptake and the intracellular DOX release, indicating that the newly designed copolymers with dual‐stimuli‐response have significant potential applications as a smart nanomedicine against cancer.  相似文献   

15.
A phosphate prodrug of a phenolic or alcoholic drug is isobaric with the putative sulfate metabolite of the drug. During liquid chromatography/tandem mass spectrometry (LC/MS/MS) analysis of biological samples obtained after the administration of a phosphate prodrug, a product ion arising from the parent drug portion of the prodrug molecule is commonly used in selected reaction monitoring (SRM) utilized for the simultaneous quantitation of the prodrug and the in vivo generated parent drug. While the advantage of using a drug moiety‐specific LC‐SRM method is obvious, one drawback is that the sulfate metabolite will also respond to such an SRM transition since the metabolite will invariably yield the same product ion as the prodrug. Thus, the sulfate metabolite could be mistaken for the prodrug unless chromatographic separation between the two is achieved. In the absence of a reference standard for the sulfate metabolite to demonstrate chromatographic separation, it is important to establish a procedure that can ascertain the absence of the sulfate metabolite in the study samples to ensure the specificity of the method for the prodrug. To this end, we studied the MS/MS behavior of model phosphate and sulfate ester compounds and developed a procedure based on phosphate‐specific and sulfate‐specific product ions for distinguishing the phosphate prodrug from the sulfate metabolite. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
A new theranostic strategy is described. It is based on the use of an “all in one” prodrug, namely the biotinylated piperazine‐rhodol conjugate 4 a . This conjugate, which incorporates the anticancer drug SN‐38, undergoes self‐immolative cleavage when exposed to biological thiols. This leads to the tumor‐targeted release of the active SN‐38 payload along with fluorophore 1 a . This release is made selective as the result of the biotin functionality. Fluorophore 1 a is 32‐fold more fluorescent than prodrug 4 a . It permits the delivery and release of the SN‐38 payload to be monitored easily in vitro and in vivo, as inferred from cell studies and ex vivo analyses of mice xenografts derived from HeLa cells, respectively. Prodrug 4 a also displays anticancer activity in the HeLa cell murine xenograft tumor model. On the basis of these findings we suggest that the present strategy, which combines within a single agent the key functions of targeting, release, imaging, and treatment, may have a role to play in cancer diagnosis and therapy.  相似文献   

17.
Targeting cancer with small molecule prodrugs should help overcome problems associated with conventional cancer‐targeting methods. Herein, we focused on lysine‐specific demethylase 1 (LSD1) to trigger the controlled release of anticancer drugs in cancer cells, where LSD1 is highly expressed. Conjugates of the LSD1 inhibitor trans‐2‐phenylcyclopropylamine (PCPA) were used as novel prodrugs to selectively release anticancer drugs by LSD1 inhibition. As PCPA‐drug conjugate (PDC) prototypes, we designed PCPA‐tamoxifen conjugates 1 a and 1 b , which released 4‐hydroxytamoxifen in the presence of LSD1 in vitro. Furthermore, 1 a and 1 b inhibited the growth of breast cancer cells by the simultaneous inhibition of LSD1 and the estrogen receptor without exhibiting cytotoxicity toward normal cells. These results demonstrate that PDCs provide a useful prodrug method that may facilitate the selective release of drugs in cancer cells.  相似文献   

18.
Chemotherapy of malign tumors is usually associated with serious side effects as common anticancer drugs lack selectivity. An approach to deal with this problem is the antibody-directed enzyme prodrug therapy (ADEPT) and the prodrug monotherapy (PMT). Herein, the synthesis and biological evaluation of new glycosidic prodrugs suitable for both concepts are described. All prodrugs but one are stable in human serum and show QIC(50) values (IC(50) of prodrug/IC(50) of prodrug in the presence of the appropriate glycohydrolase) of up to 6500. This is the best value found so far for compounds interacting with DNA.  相似文献   

19.
Long‐term use of nonsteroidal anti‐inflammatory drugs (NSAIDs) for relieving inflammatory reactions can lead to severe side effects. It is of great importance to configure new dosing strategies for alleviating the side effects of NSAIDs. In this work, an enzyme‐responsive anti‐inflammatory prodrug capable of generating indomethacin upon the trigger of inflammation is developed. A monomer is first prepared after the esterification of carboxyl groups of indomethacin by hydroxyl groups of N‐(2‐hydroxyethyl) acrylamide. Then, a polymer prodrug, with indomethacin linked through ester bonds on the side chain, is synthesized by free radical polymerization of the monomer. The therapeutic drug component can be triggered to release from the prodrug under the stimulation of cholesterol esterase, mimicking the inflammation environment. On the contrary, there is only a small amount of drug released in the absence of the enzyme. Therefore, the drug can be triggered to release under the stimulation of an environment mimicking inflammation. Furthermore, the in vitro studies at the cellular level indicate that the enzyme‐responsive prodrug can efficiently relieve inflammatory responses induced by lipopolysaccharide in RAW264.7 macrophage cells while indicating no cytotoxicity.  相似文献   

20.
Many microRNAs (miRNAs) are characteristically found in cancer cells, making miRNAs promising marker biomolecules for cancer diagnosis and therapeutics. However, it is challenging to use miRNA as a cancer signature because it is difficult to convert the nucleic acid sequence information into molecular functionality. To address this challenge, we realize nucleic acid-to-small molecule converters using hairpin DNA circuits. Harnessing a Staudinger reduction as a trigger for the conversion, we constructed hybridization chain reaction (HCR) and catalytic hairpin assembly (CHA) circuits that respond to oncogenic miR-21. Fluorophore and dye molecules were released in response to miR-21 through the HCR, providing fluorogenic and chromogenic readouts. Selective cytotoxicity in miR-21-abundant cells was realized by the CHA to release the anticancer drug SN-38. This would be the first example of selective activation of a small-molecule prodrug triggered by oncogenic miRNA in human living cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号