首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 15 毫秒
1.
超分子是两种或两种以上分子通过非共价键作用形成的分子聚集体,是化学前沿研究的重要内容。2020年,超分子、分子识别和自组装等内容首次走进中学化学教材。解读了新教材中超分子、分子识别和自组装相关内容,并进行了拓展和延伸,为教师深度备课和学生深度学习提供资源,以达到培养学生学习兴趣和学科核心素养的目的。  相似文献   

2.
The molecular interactions of anionic tetrasulfonate phenyl porphyrin (TPPS) with poly(amido amine) (PAMAM) dendrimers of generation 2.0 and 4.0 (G2 and G4, respectively) forming H- or J-aggregates, as well as with human and bovine serum albumin proteins (HSA and BSA), were reviewed in the context of self-assembly molecular complementarity. The spectroscopic studies were extended to the association of aluminum phthtalocyanine (AlPCS4) detected with a PAMAM G4 dendrimer with fluorescence studies in both steady state and dynamic state, as well as due to the fluorescence quenching associated to electron-transfer with a distribution of lifetimes. The functionalization of TPPS with peripheral substituents enables the assignment of spontaneous pH-induced aggregates with different and well-defined morphologies. Other work reported in the literature, in particular with soft self-assembly materials, fall in the same area with particular interest for the environment. The microencapsulation of TPPS studies into polyelectrolyte capsules was developed quite recently and aroused much interest, which is well supported and complemented by the extensive data reported on the Imaging Microscopy section of the Luminescence of Porphyrins and Phthalocyanines included in the present review.  相似文献   

3.
A ditopic halogen‐bond acceptor organizes a diiodooctafluorostilbene for a [2+2] photodimerization reaction to take place between two stilbene molecules in the solid state. The resultant cyclobutane product is functionalized with halogen atoms and undergoes self‐assembly to form a channel‐type host–guest compound that exhibits a very rare form of self‐inclusion.  相似文献   

4.
The addition of a cyclotriphosphine to a broad range of nitriles gives access to the first examples of free 1‐aza‐2,3,4‐triphospholenes in a rapid, ambient temperature, one‐pot, high‐yield protocol. The reaction produces electron‐rich heterocycles (four lone pairs) and features homoatomic σ‐bond heterolysis, thereby combining the key features of the 1,3‐dipolar cycloaddition chemistry of azides and cyclopropanes. Also reported is the first catalytic addition of P−P bonds to the C≡N bond. The coordination chemistry of the new heterocycles is explored.  相似文献   

5.
The addition of a cyclotriphosphine to a broad range of nitriles gives access to the first examples of free 1‐aza‐2,3,4‐triphospholenes in a rapid, ambient temperature, one‐pot, high‐yield protocol. The reaction produces electron‐rich heterocycles (four lone pairs) and features homoatomic σ‐bond heterolysis, thereby combining the key features of the 1,3‐dipolar cycloaddition chemistry of azides and cyclopropanes. Also reported is the first catalytic addition of P−P bonds to the C≡N bond. The coordination chemistry of the new heterocycles is explored.  相似文献   

6.
A highly efficient multicomponent reaction based on the little-known formylating agent dimethylformamide in acetic anhydride led to a multitude of dyes of the indoline ( 1 ) and of the thiazole type ( 2 ), whose systematic evaluation revealed desired and surprising solid-state properties.  相似文献   

7.
Peptides that adopt β‐helix structures are predominantly found in transmembrane protein domains or in the lipid bilayer of vesicles. Constructing a β‐helix structure in pure water has been considered difficult without the addition of membrane mimics. Herein, we report such an example; peptide 1 self‐assembles into a supramolecular β‐helix in pure water based on charge interactions between the individual peptides. Peptide 1 further showed intriguing transitions from small particles to helical fibers in a time‐dependent process. The fibers can be switched to vesicles by changing the pH value.  相似文献   

8.
Two novel benzofulvene monomers bearing propargyl or allyl groups have been synthesized by means of readily accessible reactions, and were found to polymerize spontaneously by solvent removal, in the apparent absence of catalysts or initiators, to give the corresponding polybenzofulvene derivatives bearing clickable propargyl or allyl moieties. The clickable propargyl and allyl groups were exploited in appropriate click reactions to develop a powerful and versatile “grafting onto” synthetic methodology for obtaining tailored polymer brushes.  相似文献   

9.
Axial chirality is a prevalent and important phenomenon in chemistry. Herein we report a combination of dynamic covalent chemistry and axial chirality for the development of a versatile platform for the binding and chirality sensing of multiple classes of mononucleophiles. An equilibrium between an open aldehyde and its cyclic hemiaminal within biphenyl derivatives enabled the dynamic incorporation of a broad range of alcohols, thiols, primary amines, and secondary amines with high efficiency. Selectivity toward different classes of nucleophiles was also achieved by regulating the distinct reactivity of the system with external stimuli. Through induced helicity as a result of central‐to‐axial chirality transfer, the handedness and ee values of chiral monoalcohol and monoamine analytes were reported by circular dichroism. The strategies introduced herein should find application in many contexts, including assembly, sensing, and labeling.  相似文献   

10.
A combined catalyst system of a cinchonidine‐derived primary amine and triphenylphosphine (CD‐NH2/PPh3) exhibited high catalytic performance in the Michael reaction of aldehydes with maleimides, thereby affording the corresponding functionalized aldehydes in excellent yields (up to 99 %) and enantioselectivities (>99 % ee). More interestingly, the significance of the phosphine in enhancing the enantioselectivities in the chiral‐primary‐amine‐catalyzed Michael reaction was revealed. Furthermore, we explored the origin of the reaction mechanism in the Michael addition promoted by the dual organocatalytic system. On the basis of experimental results and spectroscopic analysis, such as UV/Vis, fluorescence emission (FL), NMR, and circular dichroism (CD) spectroscopy, as well as ESI‐MS, we found that the molecular assembly of phosphine and primary amine played a crucial role in this enantioselective reaction, in which a possible supramolecular complex was formed as an effective chiral catalyst through noncovalent molecular interactions of a cinchona alkaloid‐derived primary amine with triphenylphosphine.  相似文献   

11.
The structural features of a representative set of five complexes of octyl α- and β-mannosides with some members of a new generation of chiral tripodal diaminopyrrolic receptors, namely, (R)-5 and (S)- and (R)-7, have been investigated in solution and in the solid state by a combined X-ray, NMR spectroscopy, and molecular modeling approach. In the solid state, the binding arms of the free receptors 7 delimit a cleft in which two solvent molecules are hydrogen bonded to the pyrrolic groups and to the benzenic scaffold. In a polar solvent (CD(3)CN), chemical shift and intermolecular NOE data, assisted by molecular modeling calculations, ascertained the binding modes of the interaction between the receptor and the glycoside for these complexes. Although a single binding mode was found to adequately describe the complex of the acyclic receptor 5 with the α-mannoside, for the complexes of the cyclic receptors 7 two different binding modes were required to simultaneously fit all the experimental data. In all cases, extensive binding through hydrogen bonding and CH-π interactions is responsible for the affinities measured in the same solvent. Furthermore, the binding modes closely account for the recognition preferences observed toward the anomeric glycosides and for the peculiar enantiodiscrimination properties exhibited by the chiral receptors.  相似文献   

12.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号