首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
晶体早期生长的研究揭示,在某些体系中,晶体生长可能并不遵循传统路径.借由某些聚合物或生物分子的帮助,无机晶体的前驱体或纳米晶体在生长初期有可能聚集为无序的大块颗粒.这些聚集体表面晶化形成高结晶度高密度的外壳,随后完成从表面到核心的晶化过程.此逆向晶体生长机理在一些诸如沸石、钙钛矿、金属和金属氧化物等无机化合物体系中均已被发现,在其他材料体系里也将得到验证.认识这一新的晶体生长路径将给予我们更多的自由度来实现晶体形态控制,也有助于我们对于许多天然矿物形成机制的理解.本文简要回顾了最近本领域研究中一些典型逆向晶体生长的例子.  相似文献   

2.
The synthesis of hierarchical nanosized zeolite materials without growth modifiers and mesoporogens remains a substantial challenge. Herein, we report a general synthetic approach to produce hierarchical nanosized single‐crystal aluminophosphate molecular sieves by preparing highly homogeneous and concentrated precursors and heating at elevated temperatures. Accordingly, aluminophosphate zeotypes of LTA (8‐rings), AEL (10‐rings), AFI (12‐rings), and ‐CLO (20‐rings) topologies, ranging from small to extra‐large pores, were synthesized. These materials show exceptional properties, including small crystallites (30–150 nm), good monodispersity, abundant mesopores, and excellent thermal stability. A time‐dependent study revealed a non‐classical crystallization pathway by particle attachment. This work opens a new avenue for the development of hierarchical nanosized zeolite materials and understanding their crystallization mechanism.  相似文献   

3.
Understanding the crystallization of organic molecules is a long‐standing challenge. Herein, a mechanistic study on the self‐assembly of crystalline arrays in aqueous solution is presented. The crystalline arrays are assembled from perylene diimide (PDI) amphiphiles bearing a chiral N‐acetyltyrosine side group connected to the PDI aromatic core. A kinetic study of the crystallization process was performed using circular dichroism spectroscopy combined with time‐resolved cryogenic transmission electron microscopy (cryo‐TEM) imaging of key points along the reaction coordinate, and molecular dynamics simulation of the initial stages of the assembly. The study reveals a complex self‐assembly process starting from the formation of amorphous aggregates that are transformed into crystalline material through a nucleation–growth process. Activation parameters indicate the key role of desolvation along the assembly pathway. The insights from the kinetic study correlate well with the structural data from cryo‐TEM imaging. Overall, the study reveals four stages of crystalline self‐assembly: 1) collapse into amorphous aggregates; 2) nucleation as partial ordering; 3) crystal growth; and 4) fusion of smaller crystalline aggregates into large crystals. These studies indicate that the assembly process proceeds according to a two‐step crystallization model, whereby initially formed amorphous material is reorganized into an ordered system. This process follows Ostwald’s rule of stages, evolving through a series of intermediate phases prior to forming the final structure, thus providing an insight into the crystalline self‐assembly process in aqueous medium.  相似文献   

4.
RHO zeolitic imidazolate framework (ZIF), Zn1.33(O.OH)0.33(nim)1.167(pur), crystals with a rhombic dodecahedral morphology were synthesized by a solvothermal process. The growth of the crystals was studied over time using scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder X‐ray diffraction (PXRD) and Brunauer–Emmett–Teller (BET) analyses, and a reversed crystal growth mechanism was revealed. Initially, precursor materials joined together to form disordered aggregates, which then underwent surface recrystallization forming a core–shell structure, in which a disordered core is encased in a layer of denser, less porous crystal. When the growth continued, the shell became less and less porous, until it was a layer of true single crystal. The crystallization then extended from the surface to the core over a six‐week period until, eventually, true single crystals were formed.  相似文献   

5.
SAPO‐5 with a novel hexagonal pencil‐like morphology was hydrothermally synthesized from hydrogels that contain triethylamine and high concentrations of acetic acid at 180 °C for 48 h. The effect of the acetic acid concentration was examined and indicated that usage of a high concentration of acetic acid is crucial to the synthesis of SAPO‐5 with a pencil‐like morphology. The time‐dependent growth process of novel SAPO‐5 was observed by scanning electron microscopy with the aid of acid treatment to remove the amorphous materials for clearer observation. The samples were also characterized by X‐ray diffraction and Fourier‐transform infrared spectroscopy. The results show that the crystal growth at the early stage follows the reversed crystal‐growth route. First, the crystallization occurs on the surface of the aggregated amorphous ellipsoidal particles to form a hexagonal prism crystal shell with the encapsulation of amorphous materials. Then, the amorphous materials wrapped inside start to grow to a hexagonal prism inside the hollow larger hexagonal prism shell. Finally, the interior hexagonal prism continues to grow to the two ends with its length beyond that of the larger one by means of the Ostwald ripening process, thus forming the pencil‐like crystal.  相似文献   

6.
In the study on Ca-Mg silicate crystalline glazes, we found some disequilibrated crystallization phenomena,such as non-crystallographic small angle forking and spheroidal growth, parasitism and wedging-form of crystals, dendritic growth, secondary nucleation, etc. Those phenomena possibly resulted from two factors:(1) partial temperature gradient, which is caused by heat asymmetry in the electrical resistance furnace,when crystals crystalize from silicate melt ; (2) constitutional supercooling near the surface of crystals. The disparity of disequilibrated crystallization phenomena in different main crystalline phases causes various morphological features of the crystal aggregates. At the same time, disequilibrated crystallization causes great stress retained in the crystals, which results in cracks in glazes when the temperature drops. According to the results, the authors analyzed those phenomena and displayed correlative figures and data.  相似文献   

7.
In the study on Ca-Mg silicate crystalline glazes, we found some disequilibrated crystallization phenomena,such as non-crystallographic small angle forking and spheroidal growth, parasitism and wedging-form of crystals, dendritic growth, secondary nucleation, etc. Those phenomena possibly resulted from two factors:(1) partial temperature gradient, which is caused by heat asymmetry in the electrical resistance furnace,when crystals crystalize from silicate melt; (2) constitutional supercooling near the surface of crystals. The disparity of disequilibrated crystallization phenomena in different main crystalline phases causes various morphological features of the crystal aggregates. At the same time, disequilibrated crystallization causes great stress retained in the crystals, which results in cracks in glazes when the temperature drops. According to the results, the authors analyzed those phenomena and displayed correlative figures and data.  相似文献   

8.
Micro‐ and macroscopic studies of nucleation and growth processes of MnAlPO‐5 nanosized crystals under ionothermal synthesis conditions are reported herein. The samples treated at 150 °C were extracted from the reaction mixture at various stages of crystallization, and characterized by XRD; SEM; thermogravimetric analysis (TGA); 31P and 27Al solid‐state magic angle spinning (MAS) NMR, Raman, UV/Vis, and X‐ray fluorescence spectroscopy (XRF). The starting raw materials (alumina, manganese, and phosphorous) were dissolved completely in the ionic liquid and transformed into an amorphous solid after 5 h of ionothermal treatment. This amorphous solid then undergoes structural changes over the following 5–25 h, which result in an intermediate phase that consists of octahedral Al species linked to the manganese and phosphate species. The first MnAlPO‐5 nuclei on the surface of the intermediate can be observed after 50 h ionoheating. These nuclei further grow, as the surface of the intermediate is in full contact with the ionic liquid, to give crystalline MnAlPO‐5 nanoparticles with a mean diameter of 80 nm. The crystals become fully detached from the intermediate and are then liberated as discrete particles after 90 h heating. The transformation process from amorphous to intermediate and then to the crystalline MnAlPO‐5 nanoparticles shows that nucleation starts at the solid–liquid interface and continues through surface‐to‐core reversed‐growth until the entire amorphous solid is transformed into discrete nanocrystals.  相似文献   

9.
Tailoring the morphology of a specific crystalline material through distinct crystal growth mechanisms (classical and nonclassical) is challenging. Herein, we report the two unique morphologies of a medium-pore (10×8-ring) zeolite, ZSM-57, prepared by employing an identical organic structure-directing agent (OSDA) and different inorganic cations, namely Na+ and K+, denoted as ZSM-57-Na (pentagonal nanoplates) and ZSM-57-K (pentagonal nanoprisms), respectively. The tunable twin domain size and twin boundaries in both samples have been unraveled at the atomic level by electron crystallography. It is of significance to note that the 10-ring pore openings run perpendicular to the pentagonal nanoplates and nanoprisms. Moreover, the distinct crystal growth mechanisms, which result in the different unique morphologies and tunable twin domains, were further determined by electron crystallography combined with other techniques. Nonclassical growth involving the aggregation of amorphous aluminosilicate nanoparticles to the smooth ZSM-57-Na crystal surface dominates the ZSM-57-Na crystallization process. For the ZSM-57-K sample, the classical layer-by-layer growth through the addition of silica molecules to advancing steps on the crystal surface dominates the ZSM-57-K crystallization process. The different morphologies of both samples result in the distinct catalytic lifespan of the methanol conversion and selectivity of lower olefins.  相似文献   

10.
Polystyrene latex particles modified at the surface with different hydrophilic functional groups were prepared by miniemulsion polymerization and used as controlling agents in the crystallization of zinc oxide from aqueous medium. The effects of the chemical nature of the surface functionalization and the latex concentration on the crystal growth, morphology, and crystalline structure of the resulting zinc oxide were analyzed. Micro‐ and submicrosized crystals with a broad variety of morphologies depending on the functionalization were obtained. Among the different latexes studied, the acrylic‐acid‐derived particles were shown to be a convenient system for further quantitative investigations. In this case, as the additive concentration increases, the length‐to‐width ratio (aspect ratio) of the crystals decreases systematically. Preferential adsorption of the latex particles onto the fast‐growing faces {001} of ZnO is assumed to follow a Langmuir‐type isotherm, and interaction of the adsorbed particles with the growth centers will reduce the growth rate in [001]. This leads to a quantitative relationship linking the aspect ratio to the latex concentration at constant diameter and surface chemistry of the latex. The dependence of the aspect ratio on charge density of the latex can also be modeled by an algorithm in which attractive forces between the latex particle and the ZnO surface are balanced against repulsive forces of an osmotic nature. The latter are associated with the confined volume between the crystal and latex particle surfaces.  相似文献   

11.
Understanding and controlling organic crystallization in solution is a long‐standing challenge. Herein, we show that crystallization of an aromatic amphiphile based on perylene diimide in aqueous media involves initially formed amorphous spherical aggregates that evolve into the crystalline phase. The initial appearance of the crystalline order is always confined to the spherical aggregates that are precursors for crystalline evolution. The change in the solvation of the prenucleation phase drives the crystallization process towards crystals that exhibit very different structure and photofunction. The initial molecular structure and subsequent crystal evolution can be regulated by tuning the hydrophobicity at various stages of crystallization, affording dissimilar crystalline products or hindering crystallization. Thus, the key role of the precrystalline states in organic crystal evolution enables a new strategy to control crystallization by precrystalline state manipulation.  相似文献   

12.
高岭土微球上无胺法ZSM-5的原位合成   总被引:4,自引:0,他引:4  
无胺体系中,采用水热法在焙烧高岭土微球上原位晶化合成了ZSM-5分子筛。考察了晶化温度、晶化时间、晶种加入量以及合成体系硅铝比等主要因素对分子筛合成的影响,得出了较佳的原位晶化合成条件。采用XRD、SEM、N2吸附脱附等手段对合成样品进行了表征。结果表明:在高岭土微球上合成出了颗粒尺寸小于1 μm的小晶粒原位ZSM-5分子筛;晶化产物的比表面积、总孔容、微孔表面积和微孔孔容均明显增大,微孔分布集中于0.54 nm。  相似文献   

13.
Recent streams of laser studies on crystallization and crystal growth are summarized and reviewed. Femtosecond multiphoton excitation of solutions leads to their ablation at the focal point, inducing local bubble formation, shockwave propagation, and convection flow. This phenomenon, called “laser micro tsunami” makes it possible to trigger crystallization of molecules and proteins from their supersaturated solutions. Femtosecond laser ablation of a urea crystal in solution triggers the additional growth of a single daughter crystal. Intense continuous wave (CW) near infrared laser irradiation at the air/solution interface of heavy‐water amino acid solutions results in trapping of the clusters and evolves to crystallization. A single crystal is always prepared in a spatially and temporally controlled manner, and the crystal polymorph of glycine depends on laser power, polarization, and solution concentration. Upon irradiation at the glass/solution interface, a millimeter‐sized droplet is formed, and a single crystal is formed by shifting the irradiation position to the surface. Directional and selective crystal growth is also possible with laser trapping. Finally, characteristics of laser‐induced crystallization and crystal growth are summarized.  相似文献   

14.
Offretite zeolite synthesis in the presence of cetyltrimethylammonium bromide (CTABr) is reported. The offretite crystals were synthesized with a high crystallinity and hexagonal prismatic shape after only 72 h of hydrothermal treatment at 180 °C. The CTABr has dual-functions during the crystallization of offretite, viz. as structure-directing agent and as mesoporogen. The resulting offretite crystals, with a Si/Al ratio of 4.1, possess more acid sites than the conventional offretite due to their high crystallinity and hierarchical structure. The synthesized offretite is also more reactive than its conventional counterpart in the acylation of 2-methylfuran for biofuel production under non-microwave instant heating condition, giving 83.5% conversion with 100% selectivity to the desired product 2-acetyl-5-methylfuran. Hence, this amphiphile synthesis approach offers another cost-effective and alternative route for crystallizing zeolite materials that require expensive organic templates.  相似文献   

15.
不加无机强碱,在纯有机胺体系中合成了小晶粒offretite沸石,并采用XRD、SEM、FT-IR以及苯与丙烯烷基化制异丙苯探针反应对典型样品进行了结构性能表征。结果表明,采用四乙基氢氧化铵TEAOH与四甲基溴化铵TMABr为双模板剂时,TEAOH的量对合成产物影响很大,而TMABr的量增大容易导致生成Beta沸石。所合成的offretite沸石在苯与丙烯烷基化制异丙苯反应中活性和选择性较高。  相似文献   

16.
于泳  陈万春  康琦  刘道丹  戴国亮  崔海亮 《化学学报》2006,64(12):1284-1290
采用配液结晶法制取了溶菌酶蛋白质晶体, 使用动态光散射测量了溶液中聚集体的颗粒度几率分布; 使用Zeiss显微镜测定了溶菌酶(110)晶面的生长速度. 实验表明: 随着蛋白质和NaCl浓度的增加, 溶液中聚集体的颗粒尺寸也相应增加. 随着反应时间的增加, 溶菌酶分子在溶液中的聚集反应, 逐渐达到平衡; 在蛋白质和NaCl浓度较高时, 溶菌酶晶体的(110)面生长较快, 而在蛋白质和NaCl浓度较低时, 该晶面生长较慢. 基于二维成核生长机理, 从晶体生长动力学理论方程出发, 计算了二维成核的形成能α=4.01×10-8 J•cm-2.  相似文献   

17.
ZSM-5分子筛结晶度及晶粒大小的影响因素   总被引:1,自引:0,他引:1  
尹建军 《分子催化》2012,26(2):162-168
以硅溶胶为硅源,偏铝酸钠为铝源,用晶种法制备ZSM-5分子筛.考察了物料混合方式、陈化时间、晶化时间、晶化温度、碱度和水量等对ZSM-5分子筛相对结晶度和晶粒大小的影响.用X射线衍射仪(XRD)、扫描电子显微镜(SEM)和激光粒度分析等对所合成样品进行了表征.结果表明:在一定的高碱度条件下形成高浓度的硅铝酸盐凝胶,才能合成出晶化良好的样品,ZSM-5分子筛是按固相机理形成的;合成ZSM-5分子筛的相对结晶度和平均颗粒度均随晶化温度的升高及硅铝酸盐凝胶浓度的增加而增大,在室温陈化24 h、180℃晶化12~24 h时相对结晶度最高,平均颗粒度基本上与陈化时间无关.  相似文献   

18.
A comparative systematic kinetic study of crystallization among various smectogens of higher homologues of the benzylidene aniline nO.m series (9O.2, 13O.2, 14O.2, 15O.2, 16O.2, 2O.16, 11O.16, 16O.16 and 18O.16) has been carried out by thermal microscopy and differential scanning calorimetry (DSC). The DSC thermograms were run from crystallization temperature to the isotropic melt for different time interval. The liquid crystalline behaviour together with rate of crystallization of smectic ordering in newly synthesized nO.m compounds (16O.2, 2O.16, 11O.16, 16O.16, 18O.16) with respect to their lower homologues are discussed in relation to the kinetophase (which occurs prior to the crystallization), end chain lengths, the odd-even effect and chain length ratio. The molecular mechanism and dimensionality in the crystal growth were computed from the Avrami equation. The characteristic crystallization time (t*) at each crystallization temperature was deduced from the individual plots of log t vs. DeltaH. Further, a qualitative approach was made to the crystallization process in smectic layers.  相似文献   

19.
超声老化对MCM-49分子筛合成的影响   总被引:1,自引:0,他引:1  
 以六亚甲基亚胺为模板剂,在静态水热合成条件下,考察了超声老化对MCM-49分子筛合成的影响. 结果表明,凝胶经超声老化处理后,即使使用比表面积小的硅源(硅胶或白碳黑)也能合成出不含杂晶且结晶良好的MCM-49分子筛. 超声老化处理缩短了MCM-49分子筛的晶化时间,扩大了分子筛的晶化范围,同时降低了模板剂的用量. 合成的MCM-49分子筛结晶度高,颗粒度小.  相似文献   

20.
Diffusion limitation in micropores of zeolites leads to a demand for optimization of zeolite morphology and/or porosity. However, tailoring crystallization processes to realize targeted morphology/porosity is a major challenge in zeolite synthesis. On the basis of previous work on the salt‐aided, seed‐induced route, the template effect of seeds on the formation of micropores, mesopores and even macropores was further explored to selectively achieve desired hierarchical architectures. By carefully investigating the crystallization processes of two typical samples with distinct crystal morphologies, namely, 1) nanocrystallite‐oriented self‐assembled ZSM‐5 zeolite and 2) enriched intracrystal mesoporous ZSM‐5 zeolite, a detailed mechanism is proposed to clarify the role of silicalite‐1 seeds in the formation of diverse morphologies in a salt‐rich heterogeneous system, combined with the transformation of seed‐embedded aluminosilicate gel. On the basis of these conclusions, the morphologies/porosities of products were precisely tailored by deliberately adjusting the synthesis parameters (KF/Si, tetrapropylammonium bromide/Si and H2O/Si ratios and type of organic template) to regulate the kinetics of seed dissolution and seed‐induced recrystallization. This work may not only provide a practical route to control zeolite crystallization for tailoring crystal morphology, but also expands the knowledge of crystal growth mechanisms in a heterogeneous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号