首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Borosulfates are an ever‐expanding class of compounds and the extent of their properties is still elusive. Herein, the first two copper borosulfates Cu[B2(SO4)4] and Cu[B(SO4)2(HSO4)] are presented, which are structurally related but show different dimensionalities in their substructure: While Cu[B2(SO4)4] reveals an anionic chain, [B(SO4)4/2]?, with both a twisted and a unique chair conformation of the B(SO4)2B subunits, Cu[B(SO4)2(HSO4)] reveals isolated [B2(SO4)4(HSO4)2]4? anions showing exclusively a twisted conformation. The complex anion can figuratively be obtained as a cut‐out from the anionic chain by protons. Comparative DFT calculations based on magnetochemical measurements complement the experimental studies. Calculation of the pKa values of the two conformers of the [B2(SO4)4(HSO4)2]4? anion revealed them to be more similar to silicic than to sulfuric acid, highlighting the close relationship to silicates.  相似文献   

2.
K4[BS4O15(OH)], Ba[B2S3O13], and Gd2[B2S6O24] were obtained by a new synthetic approach. The strategy involves initially synthesizing the complex acid H[B(HSO4)4] which is subsequently reacted in an open system with anhydrous chlorides of K, Ba, and Gd to the respective borosulfates and a volatile molecule (HCl). Furthermore, protonated borosulfates should be accessible by appropriate stoichiometry of the starting materials, particularly in closed systems, which inhibit deprotonation of H[B(HSO4)4] via condensation and dehydration. This approach led to the successful synthesis of the first divalent and trivalent metal borosulfates (Ba[B2S3O13] with band‐silicate topology and Gd2[B2S6O24] with cyclosilicate topology) and the first hydrogen borosulfate K4[BS4O15(OH)].  相似文献   

3.
Increased synthetic control in borosulfate chemistry leads to the access of various new compounds. Herein, the polymorphism of phyllosilicate-analogous borosulfates is unraveled by adjusting the oleum (65 % SO3) content. The new polymorphs β-Mg[B2(SO4)4] and α-Co[B2(SO4)4] both consist of similar layers of alternating borate and sulfate tetrahedra, but differ in the position of octahedrally coordinated cations. The α-modification comprises cations between the layers, whereas in the β-modification cations are embedded within the layers. With this new synthetic approach, phase-pure compounds of the respective polymorphs α-Mg[B2(SO4)4] and β-Co[B2(SO4)4] were also achieved. Tanabe–Sugano analysis of the Co2+ polymorphs reveal weak ligand field splitting and give insights into the coordination behavior of the two-dimensional borosulfate anions for the first time. DFT calculations confirmed previous in silico experiments and enabled an assignment of the polymorphs by comparing the total electronic energies. The compounds are characterized by single-crystal XRD, PXRD, FTIR, and UV/Vis/NIR spectroscopy, thermogravimetric analysis (TGA), and density functional theory (DFT) calculations.  相似文献   

4.
5.
Reaction of Tin Chlorides with Polysulfides. Crystal Structures of (PPh4)2[SnCl2(S6)2], (PPh4)2[Sn4Cl4S5(S3)O], and (PPh4)2[SnCl6] · S8 · 2CH3CN . The reaction of PPh4[SnCl3] with Na2S4 in acetonitrile in the presence of small amounts of water yields (PPh4)2[Sn4Cl4S5(S3)O] and minor amounts of (PPh4)2[SnCl2(S6)2], PPh4Cl · 2S8 and (PPh4)2[SnCl6]. SnCl4 is partially reduced by (PPh4)2Sx, PPh4[SnCl3] and (PPh4)2[SnCl6] · S8 · 2CH3CN being produced. According to the X-ray crystal structure determination the [Sn4Cl4S5(S3)O]2?-ion consists of an O atom that is coordinated by four Sn atoms which in turn are liked with one another by five single S atoms and one S3 group. In the [SnCl2(S6)2]2?-ion the Sn atom is octahedrally coordinated by two Cl atoms in trans arrangement and by two chelating S6 groups. Octahedral [SnCl6]2? ions and S8 molecules in the crown conformation are present in (PPh4)4[SnCl6] · S8 · 2CH3CN.  相似文献   

6.
Borosulfates are compounds analogous to silicates, with heteropolyanionic subunits of vertex-linked (SO4)- and (BO4)-tetrahedra. In contrast to the immense structural diversity of silicates, the number of borosulfates is yet very limited and the extent of their properties is still unknown. This is particularly true for representatives with phyllosilicate and tectosilicate analogue anionic substructures. Herein, we present Ni[B2(SO4)4] and Co[B2(SO4)4], two new borosulfates with phyllosilicate analogue topology. While the anionic subunits of both structures are homeotypic, the positions of the charge compensating cations differ significantly: NiII is located between the borosulfate layers, while CoII—in contrast—is embedded within the layer. Detailed analysis of these two structures based on single-crystal X-ray diffraction, magnetochemical investigations, X-ray photoelectron spectroscopy, and quantum chemical calculations, unveiled the reasons for this finding. By in silico comparison with other divalent borosulfates, we uncovered systematic trends for phyllosilicate analogues leading to the prediction of new species.  相似文献   

7.
Preparation, Raman Spectra, and Crystal Structures of V2O3(SO4)2, K[VO(SO4)2], and NH4[VO(SO4)2] The oxo-sulfato-vanadates(V) V2O3(SO4)2, K[VO(SO4)2], and NH4[VO(SO4)2] have been prepared as crystals suitable for X-ray structure determination. In all structures sulfate acts as an unidentate ligand only toward a single vanadium atom. The structure of V2O3(SO4)2 consists of a threedimensional network of pairs of cornershared VO6 octahedra with one terminal oxygen atom each, and SO4 tetrahedra. All oxygen atoms of the sulfate ions are coordinated. NH4[VO(SO4)2] and K[VO(SO4)2] are isostructural. VO6 octahedra with one terminal oxygen atom and pairs of sulfate tetrahedra form infinite chains by corner sharing. The chains are weakly interlinked to layers. The sulfate ions are distorted towards planar SO3 molecules and single oxygen atoms attached to vanadium. This structural detail gives an explanation for the mechanism of the reversible reaction K[VO(SO4)2] ? K[VO2(SO4)] + SO3 at 400°C. Raman spectra of the compounds have been recorded and interpreted with respect to their structures. Crystal data: V2O3(SO4)2, monoclinic, space group P21/a, a = 947.2(4), b = 891.3(3), c? 989.1(4) pm, β = 104.56(3)°, Z = 4, 878 unique data, R(Rw) = 0.039(0,033); K[VO(SO4)2], orthorhombic, space group P212121, a = 495.3(2), b = 869.6(9), c = 1 627(1)pm, Z = 4, 642 unique data, R(Rw) = 0,11(0,10); NH4[VO(SO4)2], orthorhombic, space group P212121, a = 495.3(1), b = 870.0(2), c = 1 676.7(4)pm, Z = 4, 768 unique data, R(Rw) = 0.088(0.083).  相似文献   

8.
Two new borosulfates were obtained either by an open vessel synthesis from sulfuric acid and B(OH)3, yielding (NH4)3[B(SO4)3] or from solvothermal synthesis in oleum enriched sulfuric acid and B(OH)3, yielding Sr[B2(SO4)4]. (NH4)3[B(SO4)3] crystallizes homeotypic to K3[B(SO4)3] in space group Ibca (Z = 8, a = 728.58(3) pm, b = 1470.84(7) pm, c = 2270.52(11) pm), comprising open branched vierer single chains {1[B(SO4)2(SO4)2/2]3–}. Sr[B2(SO4)4] crystallizes as an ordered variant of Pb[B2(SO4)4] in space group Pnna (Z = 4, a = 1257.4(4) pm, b = 1242.1(4) pm, c = 731.9(2) pm), consisting of loop branched vierer single chains {1[B(SO4)4/2]2–}. Vibrational spectroscopy confirms both refined structure models. Thermal analysis of the dried powders, showed a decomposition towards the binary and ternary components, whereas a thermal treatment in the presence of the mother liquor promotes a decomposition of Sr[B2(SO4)4] towards Sr[B2O(SO4)3].  相似文献   

9.
分别合成了 [Co(3, 3-tri)(men)Cl][ZnCl4]、[Co(3, 3-tri)(cmen)Cl][ZnCl4] (3, 3-tri = N-(3-胺基丙基)-1, 3-丙二胺,men = N-甲基乙二胺,cmen = 1, 2-二胺基-丙烷) 2体系的部分配合物异构体,用单晶 X-射线衍射分析方法解析了2异构体的晶体结构。其中 [Co(3, 3-tri)(men)Cl][ZnCl4] 体系的一异构体Ⅰ的化学简式为 CoCl(C9H27N5)ZnCl4,晶体属正交晶系,空间群 Pca21,a = 16.788(2),b = 7.964(1),c = 14.416(2) 牛琕 =1927.3(4) ?,Dc = 1.747 g/cm3,Z = 4,F(000) = 1032,Mr = 506.91,R = 0.0352,wR =0.0935;[Co(3, 3-tri)(cmen)Cl]2+ 体系的一异构体Ⅱ的化学简式为 CoCl(C9H27N5)ZnCl4稨2O, 晶体属三斜晶系,空间群 P ,a = 9.511(3), b = 9.972(3),c = 11.694(3) 牛琣 = 68.367(5),b = 85.196(6),?= 86.580(5),V = 1026.9(5)?3,Dc = 1.698 g/cm3,Z = 2,F(000) = 536,Mr = 524.92,R = 0.0494,wR = 0.1180。两异构体中 Co3+ 为六配位,晶胞中对映体比例均为1:1。在配合物异构体Ⅰ和Ⅱ中,三元胺以经式排布,三元胺配体(3, 3-tri)仲胺上的氢相对于Cl分别处于顺位(syn-)和反位(anti-);二元胺配体氮(或邻位碳)取代的胺基氮原子(N*)与三元胺配体中的仲氮原子分别处于对位(trans(N*))和邻位(cis(N*))。  相似文献   

10.
Sm4S3[Si2O7] and NaSm9S2[SiO4]6: Two Sulfide Silicates with Trivalent Samarium The sulfide silicates Sm4S3[Si2O7] and NaSm9S2[SiO4]6 are obtained as light yellow transparent crystals by the reaction of Sm, Sm2O3, S, and SiO2 with fluxing SmCl3 or NaCl, respectively, in suitable molar ratios in fused evacuated silica tubes (850 °C, 7 d). Tetragonal crystals of Sm4S3[Si2O7] (I41/amd; Z = 8; a = 1186.4(1); c = 1387.0(2) pm) with ecliptically conformed [Si2O7]6–‐groups of corner sharing [SiO4]‐tetrahedra are formed. These double tetrahedra as well the sulfide anions (S2–) coordinate two crystallographically independent metal cations. They provide coordination numbers of 8 + 1 (5 S2– and 3 + 1 O2–) for Sm1 and 9 (3 S2– and 6 O2–) for Sm2. NaSm9S2[SiO4]6 crystallizes hexagonally (P63/m; Z = 1; a = 975.32(9); c = 676.46(7) pm) in a modified bromapatite‐type structure. The coordination spheres about the two crystallographically different Sm3+ cations are built up by oxygen atoms of the orthosilicate units ([SiO4]4–) and sulfide anions (S2–). As a result, Sm1 and Sm2 have coordination numbers of 9 and 8, respectively. Na+ and (Sm1)3+ occupy the position 4 f in a molar ratio of 1 : 3 whereas the lower coordinated (Sm2)3+ occupies the 6 h position.  相似文献   

11.
12.
The complex {[Co(H2O)4(3,3′-azpy)](3,3′-azpy)3(PF6)2}n(3,3′-azpy=3,3′-azobispyridine) has been synthesized and characterized. The crystal (C40H40F12CoN16O4P2, Mr=1157.75) belongs to the triclinic system, space group P1 with the following crystallographic parameters: a=10.759(2),b=11.012(2), c=23.207(4)?; α=85.330(10), β=83.470(10),γ=69.770(10)°;V=2560.6(8)?3,Dc=1.502g·cm-3, μ(MoKα)= 0.498mm-1,F(000)=1178,Z=2, and final R1=0.0469, wR2=0.1053 for observed reflections 5549 (I> 2.00σ(I)).The X-ray analysis reveals that cobalt(Ⅱ) cation coordination environment is a distorted octahedral geometry, the Co2+ ion is coordinated by four oxygen atoms of water in the equatorial plane, while the two nitrogen atoms of 3,3′-azpy occupy the axial positions. The complex forms a one-dimensional chain structure via 3,3′-azpy bridging ligand. The one-dimensional chain forms three-dimensional network by hydrogen bonds and π-π inter-actions.  相似文献   

13.
The reaction of Au(OH)(3) and oleum (65% SO(3)) in the presence of M(2)SO(4) (M = Li, Na) afforded yellow single crystals of Li[Au(S(2)O(7))(2)] (triclinic, P ?1, Z = 1, a = 532.20(3), b = 649.69(4), c = 836.72(5) pm, α = 107.982(2)°, β = 90.171(2)°, γ = 102.583(2)°, V = 267.80(3) ?(3)) and Na[Au(S(2)O(7))(2)] (monoclinic, P2(1)/n, Z = 2, a = 533.31(3), b = 1193.38(7), c = 907.67(5) pm, β = 98.548(3)°, V = 571.26(6) ?(3)). Both compounds exhibit the unprecedented [Au(S(2)O(7))(2)](-) anion in which a square planar coordination of the central gold atom is achieved by the chelating attachment of two disulfate groups. The disulfates were characterized by means of IR spectroscopy and DTA/TG measurements. For both compounds, the decomposition occurs via several steps and is finished at about 450 °C at the stage of elemental gold and the sulfates M(2)SO(4) (M = Li, Na), as revealed by X-ray powder diffraction of the residues.  相似文献   

14.
Pr4S3[Si2O7] and Pr3Cl3[Si2O7]: Derivatives of Praseodymium Disilicate Modified by Soft Foreign Anions For synthesizing both the disilicate derivatives Pr4S3[Si2O7] and Pr3Cl3[Si2O7], Pr, Pr6O11 and SiO2 are brought to reaction with S and PrCl3, respectively, in suitable molar ratios (850 °C, 7 d) in evacuated silica tubes. By using NaCl as a flux, Pr4S3[Si2O7] crystallizes as pale green, transparent single crystals (tetragonal, I41/amd, a = 1201.6(1), c = 1412.0(2) pm, Z = 8) with the appearance of slightly compressed octahedra. On the other hand, Pr3Cl3[Si2O7] emerges as pale green, transparent platelets and crystallizes monoclinically (space group: P21, a = 530.96(6), b = 1200.2(1), c = 783.11(8) pm, β = 109.07(1)°, Z = 2). In both crystal structures ecliptically conformed [Si2O7]6– units of two corner‐linked [SiO4] tetrahedra with Si–O–Si bridging angles of 131° in the sulfide and 148° in the chloride disilicate are present. In Pr4S3[Si2O7] both crystallographically independent Pr3+ cations show coordination numbers of 8 + 1 (5 S2– and 3 + 1 O2–) and 9 (3 S2– and 6 O2–). For Pr1, Pr2 and Pr3 in Pr3Cl3[Si2O7] coordination numbers of 10 (5 Cl and 5 O2–) and 9 (2 ×; 4 Cl and 5 O2– or 3 Cl and 6 O2–, respectively) occur.  相似文献   

15.
Sulfates united: the unique tetrasulfate S(4)O(13)(2-) anion was observed in the structure of (NO(2))(2)[S(4)O(13)] that forms in the reaction of N(2)O(5) with SO(3). Theoretical investigations show that the anion is a stable member of the polysulfate series [S(n)O(3n+1)](2-), which was investigated up to n=11.  相似文献   

16.
利用水热法合成了两种过渡金属配合物为模板剂的含水硼酸盐晶体Co(en)3[B4O5(OH)4]Cl·3H2O(1) 和 [Ni(en)3][B5O6(OH)4]2·2H2O (2),并通过元素分析、X射线单晶衍射、红外光谱及热重分析对其进行了表征。化合物1晶体结构的主要特点是在所有组成Co(en)33+, [B4O5(OH)4]2–, Cl– 和 H2O之间通过O–H…O、O–H…Cl、N–H…Cl和N–H…O四种氢键连接形成网状超分子结构。化合物2晶体结构的特点是[B5O6(OH)4]–阴离子通过O–H…O氢键连接形成沿a方向有较大通道的三维超分子骨架,模板剂[Ni(en)3]2+阳离子和结晶水分子填充在通道中。  相似文献   

17.
The Syntheses and Vibrational Spectra of the Homoleptic Metal Acetonitrile Cations [Au(NCCH3)2]+, [Pd(NCCH3)4]2+, [Pt(NCCH3)4]2+, and the Adduct CH3CN · SbF5. The Crystal and Molecular Structures of [M(NCCH3)4][SbF6]2 · CH3CN, M = Pd or Pt Solvolyses of the homoleptic metal carbonyl salts [M(CO)4][Sb2F11]2, M = Pd or Pt, in acetonitrile leads at 50 °C both to complete ligand exchange for the cations as well as to a conversion of the di-octahedral anion [Sb2F11] into [SbF6] and the molecular adduct CH3CN · SbF5 according to: [M(CO)4][Sb2F11]2 + 7 CH3CN → [M(NCCH3)4][SbF6]2 · CH3CN + 2 CH3CN · SbF5 + 4 CO M = Pd, Pt The monosolvated [M(NCCH3)4][SbF6]2 · CH3CN are obtained as single crystals from solution and are structurally characterized by single crystal x-ray diffraction. Both salts are isostructural. The cations are square planar but the N–C–C-sceletial groups of the ligands depart slightly from linearity. The new acetonitrile complexes as well as [Au(NCCH3)2][SbF6] and the adduct CH3CN · SbF5 are completely characterized by vibrational spectroscopy.  相似文献   

18.
Synthesis and Crystal Structures of (PPh4)2[In(S4)(S6)Cl] and (PPh4)2[In(S4)Cl3] InCl and PPh4Cl yield (PPh4)2[In2Cl6] in acetonitrile. This reacts with Na2S4 in presence of PPh4Cl, forming (PPh4)2[In(S4)(S6)Cl]. Its crystal structure was determined by X-ray diffraction (R = 0.075, 2 282 observed reflexions). It is isotypic with (PPh4)2[In(S4)(S6)Br] and contains anions with trigonal-bipyramidal coordination of In, Cl occupying an axial position, and the S4 and S6 groups being bonded in a chelate manner. The reaction of (PPh4)2[In2Cl6] and sulfur in acetonitrile yielded (PPh4)2[InCl5] and (PPh4)2[In(S4)Cl3]. The crystal structure analysis of the latter (R = 0.072, 4 080 reflexions) revealed an anion with distorted trigonal-bipyramidal coordination of In, the S4 group occupying one axial and one equatorial position; the S4 group shows positional disorder.  相似文献   

19.
Formation of PPh4[WOCl4 · THF] and PPh4Cl · 4As4S3 from W(CO)6 and PPh4[As2SCl5] and their Crystal Structures When W(CO)6 and PPh4[As2SCl5] are irradiated with UV light in tetrahydrofurane, PPh4[WOCl4 · THF], PPh4 Cl· 4As4S3 and PPh4[Cl2H] are obtained. X-ray crystal structure determinations were performed. PPh4[WOCl4 · THF], monoclinic, space group P21/c, Z = 4, a = 1207.5(2), b = 1003.7(2), c = 2642.0(5) pm, β = 114.71(1)°, R = 0.049% for 2824 reflexions; PPh4+ and [WOCl4. THF]? ions are present, the WOCl4 group having the shape of a tetragonal Pyramid with a short W ? O bond (169 pm) and the THF molecule being weakly associated (W? O 236 pm). PPh4Cl · 4AsS3, tetragonal, I41/a, Z = 4, a = 1742.3(3), c = 1664.5(4) pm, R = 0.066% for 1350 reflexions; it consists of separate PPh4+ and Cl? ions and As4S3 molecules.  相似文献   

20.
Preparation and Crystal Structure of (CH3NH3)8[NdCl6][NdCl4(H20)2]2Cl3 (CH3NH3)8[NdCl6][NdCl4 (H2O)2]2Cl3 is for the first time prepared and investigated by X-ray, single crystal work. It crystallizes in the monoclinic system (space group C2/m, Z = 2) with a = 9.358(5), b = 17.424(9), c = 15.360(8) Å, β = 108.30(4)°. The structure contains besides isolated Cl? ions distorted [NdCl6]3? octahedra and [NdCl4(H2O)2]? chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号