首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The reactions of N-heterocyclic carbenes and imidazolium salts towards an anionic gallium(I) heterocycle, [:Ga{[N(Ar)C(H)]2}], , have been studied. No reactions with N-heterocyclic carbenes were observed, though the reaction of the gallium heterocycle with the imidazolium salt, [HC{N(Mes)C(H)}2]Cl, IMesHCl, Mes = C6H2Me3-2,4,6, led to oxidative insertion of the Ga(I) centre into the imidazolium C-H bond and formation of the gallium hydride complex, [HGa{[N(Ar)C(H)]2}(IMes)]. When this reaction was carried out in the presence of traces of water, partial hydrolysis of [HGa{[N(Ar)C(H)]2}(IMes)] resulted in the formation of the hydroxy-bridged, anionic gallium hydride complex, [{HGa[N(Ar)C(H)]2}2OH][(IMes)2H]. Both compounds have been spectroscopically and structurally characterised.  相似文献   

2.
Digallane [L1Ga−GaL1] ( 1 , L1=dpp-bian=1,2-[(2,6-iPr2C6H3)NC]2C12H6) reacts with RN=C=O (R=Ph or Tos) by [2+4] cycloaddition of the isocyanate C=N bonds across both of its C=C−N−Ga fragments to afford [L1(O=C−NR)Ga−Ga(RN−C=O)L1] (R=Ph, 3 ; R=Tos, 4 ). The reactions with both isocyanates result in new C−C and N−Ga single bonds. In the case of allyl isocyanate, the [2+4] cycloaddition across one C=C−N−Ga fragment of 1 is accompanied by insertion of a second allyl isocyanate molecule into the Ga−N bond of the same fragment to afford compound [L1Ga−Ga(AllN− C=O)2L1] ( 5 ) (All=allyl). In the presence of Na metal, the related digallane [L2Ga−GaL2] ( 2 ; L2=dpp-dad=[(2,6-iPr2C6H3)NC(CH3)]2) is converted into the gallium(I) carbene analogue [L2Ga:] ( 2 A ), which undergoes a variety of reactions with isocyanate substrates. These include the cycloaddition of ethyl isocyanate to 2 A affording [Na2(THF)5]{L2Ga[EtN−C(O)]2GaL2} ( 6 ), cleavage of the N=C bond with release of 1 equiv. of CO to give [Na(THF)2]2[L2Ga(p-MeC6H4)(N−C(O))2−N(p-MeC6H4)]2 ( 7 ), cleavage of the C=O bond to yield the di-O-bridged digallium compound [Na(THF)3]2[L2Ga-(μ-O)2-GaL2] ( 8 ), and generation of the further addition product [Na2(THF)5][L2Ga(CyNCO2)]2 ( 9 ). Complexes 3 – 9 have been characterized by NMR (1H, 13C), IR spectroscopy, elemental analysis, and X-ray diffraction analysis. Their electronic structures have been examined by DFT calculations.  相似文献   

3.
The reagent RK [R=CH(SiMe3)2 or N(SiMe3)2] was expected to react with the low-valent (DIPPBDI)Al (DIPPBDI=HC[C(Me)N(DIPP)]2, DIPP=2,6-iPr-phenyl) to give [(DIPPBDI)AlR]K+. However, deprotonation of the Me group in the ligand backbone was observed and [H2C=C(N-DIPP)−C(H)=C(Me)−N−DIPP]AlK+ ( 1 ) crystallized as a bright-yellow product (73 %). Like most anionic AlI complexes, 1 forms a dimer in which formally negatively charged Al centers are bridged by K+ ions, showing strong K+⋅⋅⋅DIPP interactions. The rather short Al–K bonds [3.499(1)–3.588(1) Å] indicate tight bonding of the dimer. According to DOSY NMR analysis, 1 is dimeric in C6H6 and monomeric in THF, but slowly reacts with both solvents. In reaction with C6H6, two C−H bond activations are observed and a product with a para-phenylene moiety was exclusively isolated. DFT calculations confirm that the Al center in 1 is more reactive than that in (DIPPBDI)Al. Calculations show that both AlI and K+ work in concert and determines the reactivity of 1 .  相似文献   

4.
Phosphaketenes are versatile reagents in organophosphorus chemistry. We herein report on the synthesis of novel bis-phosphaketenes, LM(PCO)2 (M=Ga 2 a , In 2 b ; L=HC[C(Me)N(Ar)]2; Ar=2,6-i-Pr2C6H3) by salt metathesis reactions and their reactions with LGa to metallaphosphenes LGa(OCP)PML (M=Ga 3 a , In 3 b ). 3 b represents the first compound with significant In−P π-bonding contribution as was confirmed by DFT calculations. Compounds 3 a and 3 b selectively activate the N−H and O−H bonds of aniline and phenol at the Ga−P bond and both reactions proceed with a rearrangement of the phosphaethynolate group from Ga−OCP to M−PCO bonding. Compounds 2–5 are fully characterized by heteronuclear (1H, 13C{1H}, 31P{1H}) NMR and IR spectroscopy, elemental analysis, and single crystal X-ray diffraction (sc-XRD).  相似文献   

5.
A high yield synthesis of a new, extremely bulky anionic gallium(I) N-heterocyclic carbene analogue, [(DAB*)Ga:](-) (DAB* = {N(Ar*)C(H)}(2), Ar* = C(6)H(2){C(H)Ph(2)}(2)Me-2,6,4) has been developed and four monomeric sodium complexes of the heterocycle have been crystallographically characterised. The gallium(I) heterocycle has been utilised in the preparations of the heteroleptic zinc and cadmium gallyl complexes, [(DAB*)GaMX(tmeda)] (M = Zn or Cd, X = Br or I), which were crystallographically characterised. In addition, [(DAB*)Ga:](-) was oxidatively coupled to give the diamagnetic digallane(4), [(DAB*)GaGa(DAB*)]. The moderate yield synthesis of the six-membered gallium(I) heterocycle, [((But)MesNacnac)Ga:] ((But)MesNacnac = [(MesNCBu(t))(2)CH](-), Mes = mesityl), is described, and the compound found to be a monomer in the solid state by an X-ray crystallographic analysis. A low yield by-product from this synthesis, [Ga(5)I(4)((But)MesNacnac)(3)], was also isolated and shown by X-ray crystallography to be a rare example of a compound bearing a group 13 metal-metal bonded chain stabilised by β-diketiminate ligands. A preliminary analysis of the bonding in the compound was carried out using DFT calculations.  相似文献   

6.
Chalcone-derived 3-phenyl-1-pyridin-2-ylprop-2-en-1-one thiosemicarbazone (HPyCTPh) (1), 3-(4-chlorophenyl)-1-pyridin-2-ylprop-2-en-1-one thiosemicarbazone (HPyCT4ClPh) (2), 3-(4-bromophenyl)-1-pyridin-2-ylprop-2-en-1-one thiosemicarbazone (HPyCT4BrPh) (3), and 3-(4-nitrophenyl-1-pyridin-2-ylprop-2-en-1-one thiosemicarbazone (HPyCT4NO2Ph) (4) were obtained as well as their gallium(III) and zinc(II) complexes [Ga(PyCTPh)2]NO3 (Ga1), [Ga(PyCT4ClPh)2]NO3 (Ga2), [Ga(PyCT4BrPh)2]NO3 (Ga3), [Ga(PyCT4NO2Ph)2]NO3 (Ga4), [Zn(PyCTPh)2] (Zn1), [Zn(PyCT4ClPh)2] (Zn2), [Zn(PyCT4BrPh)2] (Zn3), and [Zn(PyCT4NO2Ph)2] (Zn4). The chalcones, thiosemicarbazones, and zinc(II) complexes were not active against Pseudomonas aeruginosa. The thiosemicarbazones proved to be more active than the parent chalcones against Staphylococcus aureus and Candida albicans. Coordination to zinc(II) resulted in activity improvement of most thiosemicarbazones against S. aureus. Coordination to gallium(III) significantly improved the antimicrobial activity of all thiosemicarbazones against the studied micro-organisms, suggesting this to be an effective strategy for antimicrobial activity enhancement.  相似文献   

7.
Insertion of CO2 into the transition metal-hydride bond of [RhIIIH2(PH3)3]+, CuIH(PH3)2, and RhIH(PH3)3 was theoretically investigated with ab initio MO/MP 4, SD-CI , and CCD methods. The geometries of reactants, transition states (TS ), and products were optimized at the Hartree-Fock level, and then MP 4, SD-CI , and CCD calculations were performed on those optimized structures. The TS of the CO2 insertion into the CuI(bond)H bond is the most reactantlike, while the TS of the CO2 insertion into the RhIII(bond)H bond is the most productlike. The activation energy (Ea) and the reaction energy (ΔE) were calculated to be 6.5 and −33.5 kcal/mol for the CO2 insertion into the Cu1(bond)H bond, 21.2 and −7.0 kcal/mol for the CO2 insertion into the Rh1(bond)H bond, and 51.3 and −1.1 kcal/mol for the Rh111(bond)H bond at the SD-CI level, where negative ΔE represents exothermicity. These results are discussed in terms of the M(bond)H bond energy and the trans-influence of the hydride ligand. © 1996 John Wiley & Sons, Inc.  相似文献   

8.
The new sterically demanding aminoiminophosphorane Ph2P(?NDip)(NHDip) (Dip=C6H3‐2,6‐iPr2; LH, 1 ) has been prepared as a precursor to the potassium complex [LK] ( 2 ) and a series of heteroleptic zinc(II) complexes, namely [(LZnBr)2] ( 3 ), [LZnMe] ( 4 ), [LZnEt] ( 5 ), and [(LZnI)2] ( 6 ). The products have been obtained either through a salt metathesis route by using complex 2 and ZnBr2 to give compound 3 , through a direct reaction of ligand precursor 1 and ZnR2 (R=Me or Et) yielding complexes 4 or 5 , respectively, or through iodination of complexes 4 or 5 by using I2 to afford compound 6 . Reduction of the heteroleptic zinc(II) halide complexes 3 or 6 by using a dimeric magnesium(I) compound as a selective, stoichiometric, and soluble reducing agent afforded the new zinc(I) dimer [(LZn)2] ( 7 ) in good yield. Compounds 1 – 7 were crystallographically and spectroscopically characterized and the coordination behavior of the diiminophosphinate ligand has been investigated and compared with related CN‐based ligands. An initial reactivity study has been carried out on [(LZn)2] ( 7 ) by using small‐scale reactions and the oxidative addition of small alkyl halides across the Zn? Zn bond has been found to generate equimolar amounts of the alkyl complexes 4 or 5 and the halide complexes 3 or 6 , respectively.  相似文献   

9.
Strongly electron withdrawing cyanoolefins tetracyanoethylene (tcne) and 7,7,8,8-tetracyano-p-quinodimethane (tcnq) react with [(η5-C5Me5)MCl(MDMPP-P,O)] (M=Rh, Ir; MDMPP-P,O=PPh2(2-O-6-MeO-C6H3), a P,O chelating phosphane) by insertion into the C−H bond adjacent to the M−O σ bond. The crystal structure of the iridium complex formed upon insertion of tcne is shown.  相似文献   

10.
Reactions of the sterically bulky mono-valent group 13 bisimidinate gallium(I), Ga(DDP) (1) (DDP = 2-{(2, 6-diisopropylphenyl)amino}-4-{(2, 6-diisopropylphenyl)imino}-2-pentene, HC(CMeNC6H3-2,6-iPr2)2) with olefin supported group 10 complexes, [(diene)PtCl2] [diene = 1,5-cyclooctadiene (COD), endo-dicyclopentadiene (dcy)] and [(COD)Pd(Me)(OTf)] (OTf = O3SCF3) are reported. These reactions afforded [(COD)Pt(Cl){ClGa(DDP)}] (2), [(dcy)Pt(Cl){ClGa(DDP)}] (3) and [(DDP)Ga(Me)(OTf)] (4) in moderate yields. Compounds 2-4 were characterized by elemental analysis, NMR (1H, 13C) spectroscopy and also by single crystal X-ray structural analysis. The solid state structures of complexes 2 and 3 reveal the oxidative insertion of Ga(DDP) into the Pt-Cl bond without altering the π-coordinated double bonds in the olefin.  相似文献   

11.
The synthesis of a novel mono-anionic phosphino-amide ligand based on a xanthene backbone is reported, togetherr with the corresponding GaI complex, (PON)Ga (PON = 4-(di(2,4,6-trimethylphenyl)phosphino)-5-(2,6-diisopropylanilido)-2,7-di-tert-butyl-9,9-dimethylxanthene). The solid-state structure of (PON)Ga (obtained from X-ray crystallography) reveals very weak O⋅⋅⋅Ga and P⋅⋅⋅Ga interactions, consistent with a R2NGa fragment which closely resembles those found in one-coordinate amidogallium systems. Strong N-to-Ga π donation from the amido substituent is reflected in a very short N−Ga distance (1.961(2) Å), while the P⋅⋅⋅Ga contact (3.076(1) Å) is well outside the sum of the respective covalent radii. While the donor properties of the PON ligand towards GaI are highly unsymmetrical, oxidation to GaIII leads to much stronger coordination of the pendant phosphine as shown by P−Ga distances which are up to 20 % shorter. From a steric perspective, the PON ligand is shown to be significantly bulkier than related β-diketiminate systems, a finding consistent with reactions of (PON)Ga towards O-atom sources that proceed without oligomerization. Despite this, the enhanced P-donor properties brought about by oxidation at gallium are not sufficient to quench the reactivity of the highly polar Ga−O unit. Instead, intramolecular benzylic C−H activation is observed across the Ga−O bond of a transient gallanone intermediate.  相似文献   

12.
The synthesis of iodine(I) complexes with either benzoimidazole or carbazole-derived sp2 N-containing Lewis bases is described, as well as their corresponding silver(I) complexes. The addition of elemental iodine to the linear two-coordinate Ag(I) complexes produces iodine(I) complexes with a three-center four-electron (3c–4e) [N−I−N]+ bond. The 1H and 1H-15N HMBC NMR studies unambiguously confirm the formation of the complexes in all cases via the [N−Ag−N]+→[N−I−N]+ cation exchange, with the 15N NMR chemical shift change between 94 to 111 ppm when compared to the free ligand. The single crystal X-ray crystallographic studies on eight I+ complexes revealed highly symmetrical [N−I−N]+ bonds with I−N bond distances of 2.21–2.26 Å and N−I−N angles of 177–180°, whilst some of the corresponding Ag+ complexes showed a clear deviation from linearity with N−Ag−N angles of ca. 150° and Ag−N bond distances of 2.09–2.18 Å.  相似文献   

13.
A new Schiff-base ligand 2-bromo-4-chloro-6-(cyclopropyliminomethyl)phenol and its zinc(II) complex have been synthesized and characterized by elemental analyses, infrared spectroscopy, 1H NMR, 13C NMR, and single crystal X-ray determinations. The ligand and the complex crystallized in the space groups Pnma and P21/c, respectively. In the complex, the Zn atom is four-coordinate tetrahedral coordination with two imine N and two phenolate O atoms from two Schiff-base ligands. The bond lengths related to the donor atoms in the complex are different from those in the ligand. The coordination of the ligand to the zinc also was supported by IR spectra.  相似文献   

14.
Low-valent MgI complexes like (BDI)Mg−Mg(BDI) have found wide-spread application as specialty reducing agents (BDI=β-diketiminate). Also their redox reactivity was extensively investigated. In contrast, attempts to isolate similar CaI complexes led to reduction of the aromatic solvents or N2. Complex (DIPePBDI)Ca(μ6,μ6-C6H6)Ca(DIPePBDI) ( VIII ) should be regarded a CaII complex with a bridging C6H62− dianion (DIPePBDI=HC[C(Me)N-DIPeP]2, DIPeP=2,6-C(H)Et2-phenyl). It can react as a CaI synthon by releasing benzene and two electrons. Herein we describe the reactivity of VIII with benzene, biphenyl, naphthalene, anthracene, COT, Ph3SiCl, PhSiH3, a (BDI)AlI2 complex, H2, PhX (X=F, Cl, Br, I), tBuOH and tBuCH2I. The C6H62− dianion in VIII can react as a 2e source, a nucleophile or a Brønsted base. In some cases radical reactivity cannot be excluded. Crystal structures of (DIPePBDI)Ca(μ8,μ8-COT)Ca(DIPePBDI) ( 1 ) and [(DIPePBDI)CaX ⋅ (THF)]2 (X=F, Cl, Br, I) ( 2 – 5 ) are described.  相似文献   

15.
The reactivity of an anionic gallium(I) heterocycle, [K(tmeda)][:Ga([N(Ar)C(H)]2)], Ar = C6H3Pr(i)2-2,6, towards sources of elemental chalcogens and diorgano-dichalcogenides has been investigated and comparisons drawn with the reactivity of the valence isoelectronic N-heterocyclic carbene class of ligand. The reactions of the heterocycle with N2O or (Te)PEt3 yielded the dimeric, dianionic gallium(III) complexes, [K(L)]2[(mu-E)Ga([N(Ar)C(H)]2)]2, E = O, L = tmeda; E = Te, L = THF. Treatment of [K(tmeda)][:Ga([N(Ar)C(H)]2)] with the diphenyl dichalcogenides, PhEEPh, E = Se or Te, gave the one dimensional polymer, [K[(PhSe)2Ga([N(Ar)C(H)]2)]]infinity and the monomeric complex, [K(OEt2)3][(PhTe)2Ga([N(Ar)C(H)]2)], respectively. The X-ray crystal structures of the four complexes are reported.  相似文献   

16.
The low‐valent ß‐diketiminate complex (DIPPBDI)Al is stable in benzene but addition of catalytic quantities of [(DIPPBDI)CaH]2 at 20 °C led to (DIPPBDI)Al(Ph)H (DIPPBDI=CH[C(CH3)N‐DIPP]2, DIPP=2,6‐diisopropylphenyl). Similar Ca‐catalyzed C?H bond activation is demonstrated for toluene or p‐xylene. For toluene a remarkable selectivity for meta‐functionalization has been observed. Reaction of (DIPPBDI)Al(m‐tolyl)H with I2 gave m‐tolyl iodide, H2 and (DIPPBDI)AlI2 which was recycled to (DIPPBDI)Al. Attempts to catalyze this reaction with Mg or Zn hydride catalysts failed. Instead, the highly stable complexes (DIPPBDI)Al(H)M(DIPPBDI) (M=Mg, Zn) were formed. DFT calculations on the Ca hydride catalyzed arene alumination suggest that a similar but more loosely bound complex is formed: (DIPPBDI)Al(H)Ca(DIPPBDI). This is in equilibrium with the hydride bridged complex (DIPPBDI)Al(μ‐H)Ca(DIPPBDI) which shows strongly increased electron density at Al. The combination of Ca‐arene bonding and a highly nucleophilic Al center are key to facile C?H bond activation.  相似文献   

17.
In the structure of the novel zinc complex catena‐poly[[diaqua(4‐hydroxybenzohydrazide)zinc(II)]‐μ‐sulfato], [Zn(SO4)(C7H8N2O2)(H2O)2]n, the complex cations are linked by sulfate counter‐ions into helical polymeric chains extending along the b axis. Each helix is stabilized by six intrachain hydrogen bonds involving stronger O—H...O (1.83–2.06 Å) and weaker N—H...O (2.20–2.49 Å) interactions. The ZnII atom displays a distorted octahedral geometry formed by the 4‐hydroxybenzohydrazide ligand, two water molecules and two SO42− ions, which is very similar to the metal‐atom environment in a previously reported CoII complex [Zasłona, Drożdżewski & Kubiak (2010). J. Mol. Struct. 982 , 1–8], especially the Zn—O and Zn—N bond lengths of 2.0453 (12)–2.1602 (9) and 2.1118 (12) Å, respectively.  相似文献   

18.
Most recent advances in metallation chemistry have centred on the bulky secondary amide 2,2,6,6‐tetramethylpiperidide (TMP) within mixed metal, often ate, compositions. However, the precursor amine TMP(H) is rather expensive so a cheaper substitute would be welcome. Thus this study was aimed towards developing cheaper non‐TMP based mixed‐metal bases and, as cis‐2,6‐dimethylpiperidide (cis‐DMP) was chosen as the alternative amide, developing cis‐DMP zincate chemistry which has received meagre attention compared to that of its methyl‐rich counterpart TMP. A new lithium diethylzincate, [(TMEDA)LiZn(cis‐DMP)Et2] (TMEDA=N,N,N′,N′‐tetramethylethylenediamine) has been synthesised by co‐complexation of Li(cis‐DMP), Et2Zn and TMEDA, and characterised by NMR (including DOSY) spectroscopy and X‐ray crystallography, which revealed a dinuclear contact ion pair arrangement. By using N,N‐diisopropylbenzamide as a test aromatic substrate, the deprotonative reactivity of [(TMEDA)LiZn(cis‐DMP)Et2] has been probed and contrasted with that of the known but previously uninvestigated di‐tert‐butylzincate, [(TMEDA)LiZn(cis‐DMP)tBu2]. The former was found to be the superior base (for example, producing the ortho‐deuteriated product in respective yields of 78 % and 48 % following D2O quenching of zincated benzamide intermediates). An 88 % yield of 2‐iodo‐N,N‐diisopropylbenzamide was obtained on reaction of two equivalents of the diethylzincate with the benzamide followed by iodination. Comparisons are also drawn using 1,1,1,3,3,3‐hexamethyldisilazide (HMDS), diisopropylamide and TMP as the amide component in the lithium amide, Et2Zn and TMEDA system. Under certain conditions, the cis‐DMP base system was found to give improved results in comparison to HMDS and diisopropylamide (DA), and comparable results to a TMP system. Two novel complexes isolated from reactions of the di‐tert‐butylzincate and crystallographically characterised, namely the pre‐metallation complex [{(iPr)2N(Ph)C?O}LiZn(cis‐DMP)tBu2] and the post‐metallation complex [(TMEDA)Li(cis‐DMP){2‐[1‐C(=O)N(iPr)2]C6H4}Zn(tBu)], shed valuable light on the structures and mechanisms involved in these alkali‐metal‐mediated zincation reactions. Aspects of these reactions are also modelled by DFT calculations.  相似文献   

19.
Two new dialkylammonium thiosulfates, namely bis(diisopropylammonium) thiosulfate, 2C6H16N+·S2O32−, (I), and bis(tert‐butylammonium) thiosulfate, 2C4H12N+·S2O32−, (II), have been characterized. The secondary ammonium salt (I) crystallizes with Z = 4, while the primary ammonium salt (II), with more hydrogen‐bond donors, crystallizes with Z = 8 and a noncrystallographic centre of inversion. In both salts, the organic cations and thiosulfate anions are linked within extensive N—H...O and N—H...S hydrogen‐bond networks, forming extended two‐dimensional layers. Layers are parallel to (10) in (I) and to (002) in (II), and have a polar interior and a nonpolar hydrocarbon exterior. The layered structure and hydrogen‐bond motifs observed in (I) and (II) are similar to those in related ammonium sulfates.  相似文献   

20.
The reactivity of a series of Ga(I), Ga(II) and Ga(III) heterocyclic compounds towards a number of Group 15 substrates has been investigated with a view to prepare examples of gallium-terminal pnictinidene complexes. Although no examples of such complexes were isolated, a number of novel complexes have been prepared. The reactions of the gallium(I) N-heterocyclic carbene analogue, [K(tmeda)][:Ga{[N(Ar)C(H)](2)}] (Ar = 2,6-diisopropylphenyl) with cyclo-(PPh)(5) and PhN[double bond, length as m-dash]NPh led to the unusual anionic spirocyclic complexes, [{kappa(2)P,P'-(PhP)(4)}Ga{[N(Ar)C(H)](2)}](-) and [{kappa(2)N,C-PhNN(H)(C(6)H(4))}Ga{[N(Ar)C(H)](2)}](-), via formal reductions of the Group 15 substrate. The reaction of the digallane(4), [Ga{[N(Ar)C(H)](2)}](2), with (Me(3)Si)N(3) afforded the paramagnetic, dimeric imido-gallane complex, [{[N(Ar)C(H) ](2)}Ga{mu-N(SiMe(3))}](2), via a Ga-Ga bond insertion process. In addition, the new gallium(III) phosphide, [GaI{P(H)Mes*}{[N(Ar)C(H)](2) }], Mes* = C(6)H(2)Bu(t)(3)-2,4,6; was prepared and treated with diazabicycloundecane (DBU) to give [Ga(DBU){P(H)Mes*}{[N(Ar)C(H)](2)}], presumably via a gallium-terminal phosphinidene intermediate, [Ga{[double bond, length as m-dash]PMes*}{[N(Ar)C(H)](2) }]. The possible mechanisms of all reactions are discussed, all new complexes have been crystallographically characterised and all paramagnetic complexes have been studied by ENDOR and/or EPR spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号