首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Homogeneous catalysts generally possess superior catalytic performance compared to heterogeneous catalysts. However, the issue of catalyst separation and recycling severely limits their use in practical applications. Single‐atom catalysts have the advantages of both homogeneous catalysts, such as “isolated sites”, and heterogeneous catalysts, such as stability and reusability, and thus would be a promising alternative to traditional homogeneous catalysts. In the hydroformylation of olefins, single‐atom Rh catalysts supported on ZnO nanowires demonstrate similar efficiency (TON≈40000) compared to that of homogeneous Wilkinson's catalyst (TON≈19000). HAADF‐STEM and infrared CO chemisorption experiments identified isolated Rh atoms on the support. XPS and XANES spectra indicate that the electronic state of Rh is almost metallic. The catalysts are about one or two orders of magnitude more active than most reported heterogeneous catalysts and can be reused four times without an obvious decline in activity.  相似文献   

2.
3.
4.
Co single-atom catalysts (SACs) with good aqueous solubility and abundant labelling functional groups were prepared in Co/Fe bimetallic metal-organic frameworks by a facile solvothermal method without high-temperature calcination. In contrast to traditional chemiluminescence (CL) catalysts, Co SACs accelerated decomposition of H2O2 to produce a large amount of singlet oxygen (1O2) rather than superoxide (O2.−) and hydroxyl radical (OH.). They were found to dramatically enhance the CL emission of the luminol-H2O2 reaction by 1349 times, and, therefore, were employed as very sensitive signal probes for conducting CL immunoassay of cardiac troponin I. The detection limit of the target analyte was as low as 3.3 pg mL−1. It is the first time that employment of SACs for boosting CL reactions has been validated. The Co SACs can also be employed to trace other biorecognition events with high sensitivity.  相似文献   

5.
将具有"高温混溶、室温分相"功能的离子液体[CH3(OCH2CH2)16N+Et3][CH3SO3–](ILPEG750)与甲苯-正庚烷组成的两相体系用于纳米Rh催化的烯烃氢甲酰化反应中,在优化的反应条件下,1-辛烯转化率和醛收率分别为99%和91%.催化剂经简单分相即可与产物分离,且可连续使用8次,其活性基本保持不变.  相似文献   

6.
Metal–organic framework (MOF)-derived Co-N-C catalysts with isolated single cobalt atoms have been synthesized and compared with cobalt nanoparticles for formic acid dehydrogenation. The atomically dispersed Co-N-C catalyst achieves superior activity, better acid resistance, and improved long-term stability compared with nanoparticles synthesized by a similar route. High-angle annular dark-field–scanning transmission electron microscopy, X-ray photoelectron spectroscopy, electron paramagnetic resonance, and X-ray absorption fine structure characterizations reveal the formation of CoIINx centers as active sites. The optimal low-cost catalyst is a promising candidate for liquid H2 generation.  相似文献   

7.
8.
The hydroformylation of olefins is one of the most important homogeneously catalyzed industrial reactions for aldehyde synthesis. Various ligands can be used to obtain the desired linear aldehydes in the hydroformylation of aliphatic olefins. However, in the hydroformylation of aromatic substrates, branched aldehydes are formed preferentially with common ligands. In this study, a novel approach to selectively obtain linear aldehydes in the hydroformylation of styrene and its derivatives was developed by coupling with a water–gas shift reaction on a Rh single‐atom catalyst without the use of ligands. Detailed studies revealed that the hydrogen generated in situ from the water–gas shift is critical for the highly regioselective formation of linear products. The coupling of a traditional homogeneous catalytic process with a heterogeneous catalytic reaction to tune product selectivity may provide a new avenue for the heterogenization of homogenous catalytic processes.  相似文献   

9.
李考学  王艳华  蒋景阳  金子林 《催化学报》2010,31(10):1191-1194
 基于温控配体 Ph2P(CH2CH2O)16CH3 稳定的 Rh 纳米催化剂在水/1-丁醇两相体系中具有温控相转移功能, 将其用于高碳烯烃氢甲酰化反应中. 在优化的反应条件下, 1-辛烯转化率和醛收率分别达 98% 和 96%, 对其它高碳烯烃氢甲酰化反应也具有较高的催化性能. 催化剂和产物通过简单的相分离即可分开, 连续使用 3 次后, 催化剂性能未见明显降低.  相似文献   

10.
Supported ionic liquid phases offer several advantages related with catalysis. Immobilization of ionic liquid on the solid support provides catalytic activity or efficient matrix for active phases, as enzymes or metal compounds. Ionic liquid can be physically adsorbed on the carrier (supported ionic liquid phase) or chemically grafted to the material surface (supported ionic liquid-like phase). The use of supported ionic liquid phases improves mass transport, reduces ionic amount in the process and, most importantly, enables effortless catalyst separation and recycling. Moreover, chemical modification of the surface material with ionic liquid prevents its leaching, enhancing length of catalyst life. Silica-based materials have become an effective and powerful matrix for supported ionic liquid-like phase due to its cost-efficiency, presence of hydroxyl groups on the surface enabling its functionalization, and specific material properties, such as the size and shapes of the pores. For these reasons, supported ionic liquid-like phase silica-based materials are successfully used in the organic catalysis.  相似文献   

11.
A general graphene quantum dot-tethering design strategy to synthesize single-atom catalysts (SACs) is presented. The strategy is applicable to different metals (Cr, Mn, Fe, Co, Ni, Cu, and Zn) and supports (0D carbon nanosphere, 1D carbon nanotube, 2D graphene nanosheet, and 3D graphite foam) with the metal loading of 3.0–4.5 wt %. The direct transmission electron microscopy imaging and X-ray absorption spectra analyses confirm the atomic dispersed metal in carbon supports. Our study reveals that the abundant oxygenated groups for complexing metal ions and the rich defective sites for incorporating nitrogen are essential to realize the synthesis of SACs. Furthermore, the carbon nanotube supported Ni SACs exhibits high electrocatalytic activity for CO2 reduction with nearly 100 % CO selectivity. This universal strategy is expected to open up new research avenues to produce SACs for diverse electrocatalytic applications.  相似文献   

12.
Supported ionic liquid catalysis is a concept which combines the advantages of ionic liquids with those of heterogeneous support materials. The viability of this concept has been confirmed by several studies which have successfully confined various ionic phases to the surface of support materials and explored their potential catalytic applications. Although the majority of the evaluated supports were silica based, several studies focused on polymeric materials including membranes. The preparation of these materials was achieved by using two different immobilization approaches. The first approach involves the covalent attachment of ionic liquids to the support surface whereas the second simply deposits the ionic liquid phases containing catalytically active species on the surface of the support. Herein recent advances made in this area are described.  相似文献   

13.
14.
 The hydroformylation of 1-hexene catalyzed by rhodium-TPPTS complexes in the ionic liquid [bmim]BF4 was studied. The activity and selectivity of the rhodium-TPPTS complexes in [bmim]BF4 were much higher than those reported in other ionic liquids. The TOF of 1-hexene and selectivity for aldehyde were 1508 h-1 and 92%, respectively, under the optimum conditions. The high activity of the catalyst is ascribed to the absence of halide ions as well as the much higher solubility of hydrogen and rhodium-TPPTS complexes in [bmim]BF4 than in [bmim]PF6.  相似文献   

15.
Formyl derivatives of protoporphyrin-IX dimethyl ester metal complexes were obtained via hydroformylation reactions, catalysed by rhodium-triphenylphosphine complexes. The regioselectivity of the reaction is remarkably dependent on the metal centre of the porphyrin, yielding 100% of the branched aldehyde with zinc(II) complexes and 75% with the nickel(II). The NMR characterisation of the new compounds was carried out after their derivatisation into acetals.  相似文献   

16.
陈彪  隆泉  郑保忠 《化学进展》2012,(Z1):225-234
磁性离子液体是指能够吸附在磁铁上,在外加磁场作用下具有一定磁化强度的离子液体。本文综述了自2004年磁性离子液体概念提出至今在各领域的应用,其可以催化吡咯、3-甲基噻吩等单体合成导电高分子纳米微球,同时起到溶剂和模板的作用;还可以通过外加磁场调整产物的微观结构和形貌,从而得到不同的纳米结构;它也可以充当Lewis酸催化剂,催化傅克反应等一系列化学反应,并可以回收重复使用,而且回收有望通过磁场简单实现;与碳纳米管以共价键结合可以制备具有磁性的碳纳米管。除此之外,磁性离子液体在光控顺磁性超分子体系、吸收有机挥发物等领域的应用在近年也陆续有报道。  相似文献   

17.
沈树进  韩成  王兵  王应德 《化学进展》2022,34(3):533-546
电催化二氧化碳还原(ECR)技术是实现“碳中和”目标的一种理想途径,而过渡金属单原子催化剂具有电子结构可调、原子利用率高和活性位点均一等特点,在ECR研究中具有显著优势。本文首先介绍了单原子电催化剂在还原CO2尤其是在选择性生成CO研究中的优势,然后综述了近年来Fe、Co、Ni及其他单原子电催化剂的反应位点调控策略与电催化选择性的调控机制,重点对质子耦合CO2还原生成CO的中间过程调控进行了归纳总结,并简要展望了发展方向,以期为推动单原子催化剂在ECR中规模化应用提供指导和参考。  相似文献   

18.
19.
20.
Different kinds of mono‐ and bidentate phosphite ligands were used in Rh‐catalyzed hydroformylation of styrene to illustrate the influence of steric and electronic properties of ligands on catalytic performance. High activity (99.9%) and good regioselectivity (85.4%) to the linear aldehyde were achieved under optimum conditions in the presence of Rh/bisphosphite complex (bisphosphite: 2,2′‐bis(dipyrrolylphosphinooxy)‐1,1′‐(±)‐binaphthyl). This system makes it possible to prepare functionalized terminal aldehydes from readily available styrene or its derivatives through hydroformylation with high linear selectivity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号