首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report a porous three-dimensional anionic tetrazolium based CuI−MOF 1 , which is capable of cleaving the N−H bond of ammonia and primary amine, as well as the O−H bond of H2O along with spontaneous H2 evolution. In the gas-solid phase reaction of 1 with ammonia and water vapor, CuI−MOF 1 was gradually oxidized to NH2−CuII−MOF and OH−CuII−MOF, through single-crystal-to-single-crystal (SCSC) structural transformations, which was confirmed by XPS, PXRD and X-ray single-crystal diffraction. Density functional theory (DFT) demonstrated that CuI−MOF could lower N−H bond dissociation free energy of ammonia through coordination-induced bond weakening and promote H2 evolution by the reduction potential of 1 . To our knowledge, this is the first example of MOFs that activate ammonia and amine in gas-solid manner.  相似文献   

2.
UiO-66-NH2-IM, a fluorescent metal-organic framework (MOF), was synthesized by post-synthetic modification of UiO-66-NH2 with 2-imidazole carboxaldehyde via a Schiff base reaction. It was examined using various characterization techniques (PXRD, FTIR, NMR, SEM, TGA, UV-Vis DRS, and photoluminescence spectroscopy). The emissive feature of UiO-66-NH2-IM was utilized to detect volatile organic compounds (VOCs), metal ions, and anions, such as acetone, Fe3+, and carbonate (CO32−). Acetone turns off the high luminescence of UiO-66-NH2-IM in DMSO, with the limit of detection (LOD) being 3.6 ppm. Similarly, Fe3+ in an aqueous medium is detected at LOD=0.67 μM (0.04 ppm) via quenching. On the contrary, CO32− in an aqueous medium significantly enhances the luminescence of UiO-66-NH2-IM, which is detected with extremely high sensitivity (LOD=1.16 μM, i. e., 0.07 ppm). Large Stern-Volmer constant, Ksv, and low LOD values indicate excellent sensitivity of the post-synthetic MOF. Experimental data supported by density functional theory (DFT) calculations discern photo-induced electron transfer (PET), resonance energy transfer (RET), inner filter effect (IFE), or proton abstraction as putative sensing mechanisms. NMR and computational studies propose a proton abstraction mechanism for luminescence enhancement with CO32−. Moreover, the optical behavior of the post-synthetic material toward analytes is recyclable.  相似文献   

3.
A series of octanuclear iodine-bromine interhalides [InBr8−n]2− (n=0, 2, 3, 4) were prepared systematically in two steps. Firstly, addition of a dihalogen (Br2 or IBr) to the triaminocyclopropenium bromide salt [C3(NEt2)3]Br forms the corresponding trihalide salt with Br3 or IBr2 anions, respectively. Secondly, addition to Br3 of half an equivalent of Br2 gives the octabromine polyhalide [Br8]2−, whereas addition to IBr2 of half an equivalent of Br2, IBr or I2 gives the corresponding interhalides: [I2Br6]2−, [I3Br5]2−, and [I4Br4]2−, respectively. The four octahalides were characterized by X-ray crystallography, computational studies, Raman and Far-IR spectroscopies, as well as by TGA and melting point. All of the salts were found to be ionic liquids.  相似文献   

4.
Zirconium (IV) ethylenediamine has been prepared by interaction of aqueous solutions of zirconium oxychloride and ehtylenediamine at pH 4.4 and 9.6. Its anion exchange capacity, chemical and thermal stabilities, pH titration curve and chemical composition were studied. Infrared spectra using the KBr disc method, TGA and DTA were recorded. A tentative formula was proposed showing zirconium (IV) oxide : ethylenediamine in the ratio 3:1, [ZrO(OH)+2]3 [NH2 (CH2) 2NH2]. 3 H2O. Distribution coefficient (Kd) values of a number of anionic species were determined in distilled water, and various concentrations of ammonium nitrate solution. On the basis of the difference in Kd values, the separations such as Cl - MoO42−, Br - MoO42−, I - MoO42−, SO42− - MoO42− and C2O42− - MoO42− have been achieved successfully on its column.  相似文献   

5.
《Chemical physics letters》1986,127(2):141-144
Two sets of discordant rate constants reported recently for the high-temperature reactions of NH3 with O and OH were examined by comparing the calculated concentration profiles of NH3 and OH with experiments by the shock tube technique forNH3-N2O-Ar mixtures. The rate constants were confirmed tobe: k4 = 3.1 × 1012exp(−25.5 kJ/RT) cm3 mol−1 s−1 for NH3 + O → NH2 + OH and k5 = 3.2×1012 exp(−8.4 kJ/RT) for NH3 + OH → NH2 + H2O.  相似文献   

6.
Actinyl-actinyl interactions are particularly prevalent for the pentavalent neptunyl cation (Np(V)O2)+ where these interactions appear either as a T - or D -shape (diamond-shape). T -shaped interactions have been previously identified in high concentration Np(V) solutions containing simple anions (NO3, ClO4, Cl) whereas D -shaped have only been isolated in the solid-state in the presence of carboxylate ligands. In this study, Density Functional Theory (DFT) calculations were paired with Raman spectroscopy to evaluate the formation of D -shaped interactions in the presence of aliphatic (R=H (formate), CH3 (acetate), CH2CH3 (propionate)) and aromatic (R=C6H5 (benzoate), C6H4OH (4-hydroxybenzoate), C5H4N (isonicotinate)) carboxylate ligands. DFT studies indicate that the ΔG to form hydrated T - and D -shaped forms are not spontaneous but become so with the addition of the carboxylate ligands. Raman spectra of the Np(V) carboxylate solutions contained vibrational modes associated with the D -shaped interactions, but spectral changes observed over time indicate a dynamic system. Crystallization experiments from the Np(V) carboxylate systems confirmed the presence of D- shaped dimers for the aromatic carboxylates, suggesting that the choice of the anion in solution favors actinyl-actinyl interactions even at low concentrations (≤20 mM) of Np(V).  相似文献   

7.
The reduction of iodine by hydroxylamine within the [H+] range 3×10−1–3×10−4 mol.L−1 was first studied until completion of the reaction. In most cases, the concentration of iodine decreased monotonically. However, within a narrow range of reagent concentrations ([NH3OH+]0/[I2]0 ratio below 15, [H+] around 0.1 mol.L−1, and ionic strength around 0.1 mol.L−1), the [I2] and [I3] vs. time curves showed 2 and 3 extrema, respectively. This peculiar phenomenon is discussed using a 4 reaction scheme (I2+I⇔︁I3, 2 I2+NH3OH++H2O→HNO2+4 I+5 H+, NH3OH++HNO2→N2O+2 H2O+H+, and 2 HNO2+2 I+2 H+→2 NO+I2+2 H2O). In a flow reactor, sustained oscillations in redox potential were recorded with an extremely long period (around 24 h). The kinetics of the reaction was then investigated in the starting conditions. The proposed rate equation points out a reinforcement of the inhibition by hydrogen ions when [H+] is above 4×10−2 mol.L−1 at 25°C. A mechanism based on ion-transfer reactions is postulated. It involves both NH2OH and NH3OH+ as the reducing reactive species. The additional rate suppression by H+ at low pH would be connected to the existence of H2OI+ in the reactive medium. © 1998 John Wiley & Sons, Inc. Int J Chem Kinet 30: 785–797, 1998  相似文献   

8.
IR and Raman spectra of Te(OH)6.2NH4H2AsO4.(NH4)2HAsO4 (compound I) and Te(OH)6.2(NH4)2HAsO4 (compound II) are recorded and analysed. The symmetry of different groups and the vibrational interaction between them are discussed. The observed spectra suggest the existence of HAsO2−4 in II and coexistence of HAsO2−4 and H2AsO4 in I. The ammonium ion is found to execute hindered rotation in the lattice in both the compounds.  相似文献   

9.
Density Functional Theory studies of square-planar PtII pincer structures, (4-Z-NCN)PtCl ([4-Z-NCN]=[4-Z-2,6-(Me2NCH2)2C6H2-N,C,N], Z=H, NO2, CF3, CO2H, CHO, Cl, Br, I, F, SMe, SiMe3, tBu, OH, NH2, NMe2), enable characterisation of mesomerism for the pincer-Pt interaction. Relationships between Hammett σp substituent parameters of Z and DFT data obtained from NBO6 and AOMix computation are used to probe the interaction of the 5dyz orbital of platinum with π-orbitals of the arene ring. Analogous computation for 2,6-(Me2CH2)2C6H3Z (Z=H, CF3, CHO, Cl, Br, I, F, SMe, SiMe3, tBu, OH, NH2) and (4-H-NCN)PtZ allows an estimation of the relative substituent effects of “(CH2NMe2)2PtZ” on π-delocalisation in the pincer system.  相似文献   

10.
We report the fabrication of macroscopically and microscopically homogeneous, crack-free metal-organic framework (MOF) UiO-66-NH2 (UiO: Universitetet i Oslo; [Zr6O4(OH)4(bdc-NH2)6]; bdc-NH22−: 2-amino-1,4-benzene dicarboxylate) thin films on silicon oxide surfaces. A DMF-free, low-temperature coordination modulated (CM), layer-by-layer liquid phase epitaxy (LPE) using the controlled secondary building block approach (CSA). Efficient substrate activation was determined as a key factor to obtain dense and smooth coatings by comparing UiO-66-NH2 thin films grown on ozone and piranha acid-activated substrates. Films of 2.60 μm thickness with a minimal surface roughness of 2 nm and a high sorption capacity of 3.53 mmol g−1 MeOH (at 25 °C) were typically obtained in an 80-cycle experiment at mild conditions (70 °C, ambient pressure).  相似文献   

11.
Stefan Mebs 《Chemphyschem》2023,24(6):e202200621
N2 can be stepwise converted in silico into one molecule NH3 and a secondary amide with a bond activator molecule consisting only of light main group elements. The proposed N2-activating pincer-related compound carries a silyl ion (Si(+)) center as well as three Lewis acidic (−BF2) and three Lewis basic (−PMe2) sites, providing an efficient binding pocket for gaseous N2 within the framework of intramolecular frustrated Lewis pairs (FLP). In addition, it exhibits supportive secondary P−B and F⋅⋅⋅B contacts, which stabilize the structure. In the PSi(+)−N−N−BP environment the N≡N triple bond is extended from 1.09 Å to remarkable 1.43 Å, resembling a N−N single bond. The strongly activated N−N-fragment is prone to subsequent hydride addition and protonation steps, resulting in the energy efficient transfer of two hydrogen equivalents. The next hydride added causes the release of one molecule NH3, but leaves the ligand system as poisoned R3Si(+)−NH2−PMe2 or R3Si(+)−NH3 dead-end states behind. The study indicates that approximately tetrahedral constrained SiBP2-pockets are capable to activate N2, whereas the acid-rich SiB3- and SiB2P-pocktes, as well as the base-rich SiP3-pockets fail, hinting towards the high relevance of the acid-base proportion and relative orientation. The electronic structure of the N2-activated state is compared to the corresponding state of a recently published peri-substituted bond activator molecule featuring a PSi(+)−N−N−Si(+)P site (S. Mebs, J. Beckmann, Physical Chemistry Chemical Physics 2022 , 24, 20953–20967).  相似文献   

12.
Co-crystallizing iodine with a simple dicationic salt (1,8-diammoniumoctane chloride) results in the clathration of the iodine (I2) molecules inside trigonal and hexagonal helical channels of the crystal lattice with 72 wt % overall I2 loading. The I2 inside the bigger trigonal channel forms a I−I⋅⋅⋅I−I⋅⋅⋅I−I halogen-bonded infinite helical chain, while the I2 in the smaller hexagonal channel is disordered. In both channels the I2 interaction with the channel wall happens through I−I⋅⋅⋅Cl halogen bonds. The helical channels in the crystal lattice are constructed via the strong charge-assisted H2N+H⋅⋅⋅Cl hydrogen bonds between the dications and the chloride anions. The structure shows a marked similarity with the well-known starch–I2 system, and thus may provide insight for the yet unresolved structure of the I2 in the helical starch channel.  相似文献   

13.
A family of perovskite light absorbers (NH4)3Sb2IxBr9−x (0≤x≤9) was prepared. These materials show good solubility in ethanol, a low-cost, hypotoxic, and environmentally friendly solvent. The light absorption of (NH4)3Sb2IxBr9−x films can be tuned by adjusting I and Br content. The absorption onset for (NH4)3Sb2IxBr9−x films changes from 558 nm to 453 nm as x changes from 9 to 0. (NH4)3Sb2I9 single crystals were prepared, exhibiting a hole mobility of 4.8 cm2 V−1 s−1 and an electron mobility of 12.3 cm2 V−1 s−1. (NH4)3Sb2I9 solar cells gave an open-circuit voltage of 1.03 V and a power conversion efficiency of 0.51 %.  相似文献   

14.
A detailed chemical kinetic model for ethanol oxidation has been developed and validated against a variety of experimental data sets. Laminar flame speed data (obtained from a constant volume bomb and counterflow twin‐flame), ignition delay data behind a reflected shock wave, and ethanol oxidation product profiles from a jet‐stirred and turbulent flow reactor were used in this computational study. Good agreement was found in modeling of the data sets obtained from the five different experimental systems. The computational results show that high temperature ethanol oxidation exhibits strong sensitivity to the fall‐off kinetics of ethanol decomposition, branching ratio selection for C2H5OH + OH ↔ Products, and reactions involving the hydroperoxyl (HO2) radical. The multichanneled ethanol decomposition process is analyzed by RRKM/Master Equation theory, and the results are compared with those obtained from earlier studies. The ten‐parameter Troe form is used to define the C2H5OH(+M) ↔ CH3 + CH2OH(+M) rate expression as k = 5.94E23 T−1.68 exp(−45880 K/T) (s−1) ko = 2.88E85 T−18.9 exp(−55317 K/T) (cm3/mol/sec) Fcent = 0.5 exp(−T/200 K) + 0.5 exp(−T/890 K) + exp(−4600 K/T) and the C2H5OH(+M) ↔ C2H4 + H2O(+M) rate expression as k = 2.79E13 T0.09 exp(−33284 K/T) (s−1) ko = 2.57E83 T−18.85 exp(−43509 K/T) (cm3/mol/sec) F cent = 0.3 exp(−T/350 K) + 0.7 exp(−T/800 K) + exp(−3800 K/T) with an applied energy transfer per collision value of <ΔEdown> = 500 cm−1. An empirical branching ratio estimation procedure is presented which determines the temperature dependent branching ratios of the three distinct sites of hydrogen abstraction from ethanol. The calculated branching ratios for C2H5OH + OH, C2H5OH + O, C2H5OH + H, and C2H5OH + CH3 are compared to experimental data. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 183–220, 1999  相似文献   

15.
The infrared spectra of 1,1-dimethylhydrazine, (CH3)2NNH2, and two isotopomers, (CD3)2NNH2 and (CH3)2NND2, have been recorded in the region between 600 and 100 cm−1. Very rich and complex spectra were obtained and analysis of the data has been carried out. The interpretation of the spectra arising from the two methyl torsional modes of the −d0 compound was carried out using a semi-rigid model, and the resulting potential function obtained is V30 = 1685 ± 12 cm−1 (4.82 ± 0.04 kcal mol−1); V03 = 1827 ± 16 cm−1 (5.22 ± 0.05 kcal mol−1); V60 = −92±5cm−1 (−0.26 ± 0.02 kcal mol−1); V06 = −41 ± 6cm−1 (−0.12 ± 0.02 kcal mol−1) and V33 = −51 ± 5 cm−1 (−0.15 ± 0.01 kcal mol−1). Ab initio gradient calculations were carried out employing the 3–21G and 6–31G* basis sets, as well as the 6–31G* basis set with electron correlation at the MP2 level. The structural parameters, conformational stability, and three-fold barriers to internal rotation have been determined and the gauche conformer is calculated to be more stable than the trans form by 783 cm−1 (2.24 kcal mol−1) with the MP2/6–31G* basis set. These calculations were also used to re-evaluate the previously reported assignment of the fundamental modes, and to obtain a potential function for the asymmetric torsion. All of these results are discussed and compared with corresponding quantities for some similar compounds.  相似文献   

16.
The new nanocomposites, Pd/C/ZrO2, PdO/ZrO2, and Pd/PdO/ZrO2, were prepared by thermal conversion of Pd@UiO-66-Zr−NH2 (MOF) in nitrogen or air atmosphere. The presence of Pd nanoparticles, uniformly distributed on the ZrO2 or C/ZrO2 matrix, was evidenced by transmission electron microscopy, scanning electron microscopy (SEM), Raman and X-ray Photoelectron Spectroscopy (XPS) methods. All pyrolysed composites retained the shape of the MOF template. They catalyze carbonylative Suzuki coupling under 1 atm CO with an efficiency significantly higher than the original Pd@UiO-66-Zr−NH2. The most active PdO/ZrO2 composite, formed benzophenone with TOF up to 1600 h−1, while by using Pd@UiO-66-Zr−NH2, much lower TOF values, 51–95 h−1, were achieved. After the reaction, PdO/ZrO2 was recovered with the same composition and catalytic activity. Very good results were also obtained in the transfer hydrogenation of benzophenones to alcohols with Pd/C/ZrO2 and PdO/ZrO2 catalysts under microwave irradiation.  相似文献   

17.
In this study, we investigated the effects of four inorganic anions (Cl, SO42−, H2PO4/HPO42−, and HCO3/CO32−) on titanium dioxide (TiO2)-based photocatalytic oxidation of aqueous ammonia (NH4+/NH3) at pH  9 and ∼10 and nitrite (NO2) over the pH range of 4–11. The initial rates of NH4+/NH3 and NO2 photocatalytic oxidation are dependent on both the pH and the anion species. Our results indicate that, except for CO32−, which decreased the homogeneous oxidation rate of NH4+/NH3 by UV-illuminated hydrogen peroxide, OH scavenging by anions and/or direct oxidation of NH4+/NH3 and NO2 by anion radicals did not affect rates of TiO2 photocatalytic oxidation. While HPO42− enhanced NH4+/NH3 photocatalytic oxidation at pH  9 and ∼10, H2PO4/HPO42− inhibited NO2 oxidation at low to neutral pH values. The presence of Cl, SO42−, and HCO3 had no effect on NH4+/NH3 and NO2 photocatalytic oxidation at pH  9 and ∼10, whereas CO32− slowed NH4+/NH3 but not NO2 photocatalytic oxidation at pH  11. Photocatalytic oxidation of NH4+/NH3 to NO2 is the rate-limiting step in the complete oxidation of NH4+/NH3 to NO3 in the presence of common wastewater anions. Therefore, in photocatalytic oxidation treatment, we should choose conditions such as alkaline pH that will maximize the NH4+/NH3 oxidation rate.  相似文献   

18.
Cu doped MoSi2N4 monolayer (Cu-MoSi2N4) was firstly proposed to analyze adsorption performances of common gas molecules including O2, N2, CO, NO, NO2, CO2, SO2, H2O, NH3 and CH4 via density functional theory (DFT) combining with non-equilibrium Green's function (NEGF). The electronic transport calculations indicate that Cu-MoSi2N4 monolayer has high sensitivity for CO, NO, NO2 and NH3 molecules. However, only NH3 molecule adsorbs on the Cu-MoSi2N4 monolayer with moderate strength (−0.55 eV) and desorbs at room temperature (2.36×10−3 s). Thus, Cu-MoSi2N4 monolayer is demonstrated as a potential NH3 sensor.  相似文献   

19.
Theoretical studies have been carried out on the halogen bonding interaction between para substituted chlorobenzene (Y C6H4Cl, Y = H, NH2, CH3, F, CN, NO2) and N(CH3)3 using ab initio MP2/aug‐cc‐pVDZ and DFT based wB97XD/6‐311++G(d,p) methods. The positive electrostatic potential (VS,max) on the Cl atom and the heterolytic bond breaking enthalpy of the C Cl bond have been calculated and their role on halogen bonding is discussed. The heterolytic bond breaking enthalpy of the C Cl bond is proposed as a measure of the strength of the σ‐hole on Cl atom. The binding strength of the complexes ranging between −6.13 kJ mol−1 and −9.29 kJ mol−1 are linearly related to the VS,max of the Cl atom and the bond breaking enthalpy of the C Cl bond. In addition, energy decomposition analysis was performed on the halogen bonded complexes via symmetry adapted perturbation theory (SAPT) to predict the dominant energy component and the nature of the N···Cl interaction.  相似文献   

20.
A pyrene-based metal-organic framework (MOF) SION-8 captured iodine (I2) vapor with a capacity of 460 and 250 mg g−1MOF at room temperature and 75 °C, respectively. Single-crystal X-ray diffraction analysis and van-der-Waals-corrected density functional theory calculations confirmed the presence of I2 molecules within the pores of SION-8 and their interaction with the pyrene-based ligands. The I2–pyrene interactions in the I2-loaded SION-8 led to a 104-fold increase of its electrical conductivity compared to the bare SION-8 . Upon adsorption, ≥95 % of I2 molecules were incarcerated and could not be washed out, signifying the potential of SION-8 towards the permanent capture of radioactive I2 at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号