共查询到16条相似文献,搜索用时 9 毫秒
1.
2.
3.
4.
5.
Ying Wang Prof. Dr. Shilie Pan Yunjing Shi 《Chemistry (Weinheim an der Bergstrasse, Germany)》2012,18(38):12046-12051
A new series of anhydrous mixed alkali‐metal borophosphates—Li2Cs2B2P4O15 ( 1 ), LiK2BP2O8 ( 2 ), Li3K2BP4O14 ( 3 ), and Li3Rb2BP4O14 ( 4 )—have been successfully synthesized by using the conventional solid‐state reaction method. Compound 1 contains a novel fundamental building unit (FBU), [B4P8O30], with B/P=1:2. Compound 2 contains an FBU of [B2P4O16] with B/P=1:2. Compounds 3 and 4 are isotypic, and they have a [B(P2O7)2] unit as their FBU. In all four compounds, their FBUs are connected through corner sharing to generate layered anionic partial structures, and then further linked with metallic polyhedra to form three‐dimensional (3D) frameworks. Most interestingly, three of the four compounds contain direct P‐O‐P connections in their structures, which is extremely rare among borophosphates. Thermal analyses, IR spectroscopy, and UV/Vis/near‐IR diffuse reflectance spectroscopy have also been performed on the four title compounds. 相似文献
6.
7.
Fredrickson Takagi R Johnsson M Lidin S 《Chemistry (Weinheim an der Bergstrasse, Germany)》2008,14(11):3434-3441
Compounds containing lone-pair elements such as Te(IV) are very interesting from the structural point of view, as the lone-pair nonbonding regions create low-dimensional geometrical arrangements. We have synthesized two new compounds with these features-Ba(2)Cu(2)Te(4)O(11)Br(2) (I) and Ba(2)Cu(2)Te(4)O(11-delta)(OH)(2delta)Br(2) (II, delta approximately equal to 0.57)-as members of the AE-M-Te-O-X (AE=alkaline-earth metal, M=transition metal, X=halide) family of compounds by solid-state reactions. Preliminary single-crystal X-ray analysis indicated that compound I crystallizes in the orthorhombic system, but attempts at refinement proved unsatisfactory. Closer inspection of the reciprocal lattice revealed systematic, non-crystallographic absences that indicate twinning. The structure is in fact triclinic, space group C_1 (equivalent to P_1), with unit cell parameters (at 120 K) of a=10.9027(9), b=15.0864(7), c=9.379(2) A, beta=106.8947 degrees . It is layered and built from [TeO(3)E] tetrahedra, [TeO(3+1)E] trigonal bipyramids (where E is the lone pair of Te(IV)), [CuO(4)] squares and irregular [BaO(10)Br] polyhedra. The crystal structure of II shows the same basic structure as I but contains additional oxygen, probably in the form of OH groups. The presence of satellites reveals that ordering on this O site creates an incommensurate modulation, primarily affecting Br and Te. The modulated structure of II was solved in the triclinic superspace group X$\bar 1$(alphabetagamma)0 with the vector q approximately equal to1/16 c*. 相似文献
8.
Dr. Hajime Kameo Tatsuya Kawamoto Prof. Shigeyoshi Sakaki Prof. Didier Bourissou Prof. Hiroshi Nakazawa 《Chemistry (Weinheim an der Bergstrasse, Germany)》2016,22(7):2370-2375
Si?F bond cleavage of fluoro‐silanes was achieved by transition‐metal complexes under mild and neutral conditions. The Iridium‐hydride complex [Ir(H)(CO)(PPh3)3] was found to readily break the Si?F bond of the diphosphine‐ difluorosilane {(o‐Ph2P)C6H4}2Si(F)2 to afford a silyl complex [{[o‐(iPh2P)C6H4]2(F)Si}Ir(CO)(PPh3)] and HF. Density functional theory calculations disclose a reaction mechanism in which a hypervalent silicon species with a dative Ir→Si interaction plays a crucial role. The Ir→Si interaction changes the character of the H on the Ir from hydridic to protic, and makes the F on Si more anionic, leading to the formation of Hδ+???Fδ? interaction. Then the Si?F and Ir?H bonds are readily broken to afford the silyl complex and HF through σ‐bond metathesis. Furthermore, the analogous rhodium complex [Rh(H)(CO)(PPh3)3] was found to promote the cleavage of the Si?F bond of the triphosphine‐monofluorosilane {(o‐Ph2P)C6H4}3Si(F) even at ambient temperature. 相似文献
9.
Dr. Dimitri Alvarez‐Dorta Dr. Elisa I. León Dr. Alan R. Kennedy Dr. Angeles Martín Dr. Inés Pérez‐Martín Prof. Dr. Ernesto Suárez 《Angewandte Chemie (International ed. in English)》2015,54(12):3674-3678
A simple method to modify the primary face of cyclodextrins (CDs) is described. The 6I‐O‐yl radical of α‐, β‐, and γ‐CDs regioselectively abstracts the H5II, located in the adjacent D ‐glucose unit, by an intramolecular 1,8‐hydrogen‐atom‐transfer reaction through a geometrically restricted nine‐membered transition state to give a stable 1,3,5‐trioxocane ring. The reaction has been extended to the 1,4‐diols of α‐ and β‐CD to give the corresponding bis(trioxocane)s. The C2‐symmetric bis(trioxocane) corresponding to the α‐CD is a stable crystalline solid whose structure was confirmed by X‐ray diffraction analysis. The calculated geometric parameters confirm that the primary face is severely distorted toward a narrower elliptical shape for this rim. 相似文献
10.
11.
12.
13.
14.
Prof. Dr. Mannar R. Maurya Ved Prakash Dr. Inderpal Yadav Prof. Dr. Muniappan Sankar 《欧洲无机化学杂志》2023,26(30):e202300374
Systematic analysis of the effect of para-substituents (H, Cl, Br and OMe) on the meso-phenyl group in vanadyl meso-tetraphenylporphyrins ([VIVO(TPP)] (R=H, 1 ), [VIVO(TCPP)] (R=Cl, 2 ), [ VIVO(TBPP)] (R=Br, 3 ) and [VIVO(TMPP)] (R=OMe, 4 )) on their properties and catalytic oxygen atom transfer (OAT) for oxidation of benzoin to benzil using DMSO as well as 30 % aqueous H2O2 as the sacrificial oxygen source have been studied. Electrochemical and theoretical (density functional theory) studies are in good agreement with the influence of these substituents on the catalytic property of these complexes. Complex [VIVO(TCPP)] ( 2 ) displayed the best catalytic activity for the conversion (92 %) of benzoin to benzil in 30 h with >99 % product selectivity when DMSO was used as an oxygen source, whereas excellent conversion (~100 %) of benzoin to benzil was noticed in 18 h with 95 % product selectivity when 30 % aqueous H2O2 was used as a source of oxygen. Furthermore, among these complexes, the electron-withdrawing nature of the chloro substituent at the p-position of meso-phenyl group significantly influences the oxygen atom transfer. Experimental and simulated EPR studies confirmed the +4 oxidation of vanadium in these complexes. The structure of 2 , 3 and 4 , confirmed by single crystal X-ray diffraction method, are domed in shape, and the displacement of V(IV) ion from the mean porphyrin plane follows the order: 2 (0.458 Å) < 3 (0.459 Å) < 4 (0.479 Å). We observed that the electron-withdrawing nature of chloro substituent at the p-position of meso-phenyl group influence the oxygen atom transfer from vanadyl porphyrin to dimethyl sulfide much. 相似文献
15.
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract, please click on HTML or PDF. 相似文献