首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Electrochemical splitting of water to produce hydrogen and oxygen is an important process for many energy storage and conversion devices. Developing efficient, durable, low‐cost, and earth‐abundant electrocatalysts for the oxygen evolution reaction (OER) is of great urgency. To achieve the rapid synthesis of transition‐metal nitride nanostructures and improve their electrocatalytic performance, a new strategy has been developed to convert cobalt oxide precursors into cobalt nitride nanowires through N2 radio frequency plasma treatment. This method requires significantly shorter reaction times (about 1 min) at room temperature compared to conventional high‐temperature NH3 annealing which requires a few hours. The plasma treatment significantly enhances the OER activity, as evidenced by a low overpotential of 290 mV to reach a current density of 10 mA cm?2, a small Tafel slope, and long‐term durability in an alkaline electrolyte.  相似文献   

2.
Developing efficient electrocatalysts for the oxygen evolution reaction (OER) is paramount to the energy conversion and storage devices. However, the structural complexity of heterogeneous electrocatalysts makes it a great challenge to elucidate the dynamic structural evolution and OER mechanisms. Here, we develop a controllable atom-trapping strategy to extract isolated Mo atom from the amorphous MoOx-decorated CoSe2 (a-MoOx@CoSe2) pre-catalyst into Co-based oxyhydroxide (Mo-CoOOH) through an ultra-fast self-reconstruction process during the OER process. This conceptual advance has been validated by operando characterizations, which reveals that the initially rapid Mo leaching can expedite the dynamic reconstruction of pre-catalyst, and simultaneously trap Mo species in high oxidation state into the lattice of in situ generated CoOOH support. Impressively, the OER kinetics of CoOOH has been greatly accelerated after the reverse decoration of Mo species, in which the Mo-CoOOH affords a markedly decreased overpotential of 297 mV at the current density of 100 mA cm−2. Density functional theory (DFT) calculations demonstrate that the Co species have been greatly activated via the effective electron coupling with Mo species in high oxidation state. These findings open new avenues toward directly synthesizing atomically dispersed electrocatalysts for high-efficiency water splitting.  相似文献   

3.
Coordination polymers(CPs) have great potential to be used in electrocatalysis owing to their designable compositions and structures. It is highly challenging to apply CPs as electrocatalysts for oxygen evolution reaction(OER) on account of insufficient catalytic efficiency and relatively poor stability of current electrocatalysts. Herein, through a mixed-metal strategy, one-dimensional CoxNi1-x-HIPA with dual active sites was synthesized and studied for OER electrocatalyst...  相似文献   

4.
The rapid development of renewable-energy technologies such as water splitting, rechargeable metal–air batteries, and fuel cells requires highly efficient electrocatalysts capable of the oxygen-reduction reaction (ORR) and the oxygen-evolution reaction (OER). Herein, we report a facile sonication-driven synthesis to deposit the molecular manganese vanadium oxide precursor [Mn4V4O17(OAc)3]3− on multiwalled carbon nanotubes (MWCNTs). Thermal conversion of this composite at 900 °C gives nanostructured manganese vanadium oxides/carbides, which are stably linked to the MWCNTs. The resulting composites show excellent electrochemical reactivity for ORR and OER, and significant reactivity enhancements compared with the precursors and a Pt/C reference are reported. Notably, even under harsh acidic conditions, long-term OER activity at low overpotential is reported. In addition, we report exceptional activity of the composites for the industrially important Cl2 evolution from an aqueous HCl electrolyte. The new composite material shows how molecular deposition routes leading to highly active and stable multifunctional electrocatalysts can be developed. The facile design could in principle be extended to multiple catalyst classes by tuning of the molecular metal oxide precursor employed.  相似文献   

5.
Developing highly active catalysts for the oxygen evolution reaction (OER) is of paramount importance for designing various renewable energy storage and conversion devices. Herein, we report the synthesis of a category of Co‐Pi analogue, namely cobalt‐based borate (Co‐Bi) ultrathin nanosheets/graphene hybrid by a room‐temperature synthesis approach. Benefiting from the high surface active sites exposure yield, enhanced electron transfer capacity, and strong synergetic coupled effect, this Co‐Bi NS/G hybrid shows high catalytic activity with current density of 10 mA cm?2 at overpotential of 290 mV and Tafel slope of 53 mV dec?1 in alkaline medium. Moreover, Co‐Bi NS/G electrocatalysts also exhibit promising performance under neutral conditions, with a low onset potential of 235 mV and high current density of 14.4 mA cm?2 at 1.8 V, which is the best OER performance among well‐developed Co‐based OER electrocatalysts to date. Our finding paves a way to develop highly active OER electrocatalysts.  相似文献   

6.
Facile preparation of low-cost electrocatalysts for efficient oxygen evolution reaction (OER) remains a big challenge. Herein, a novel strategy for ultrafast (20 s) transformation of bulk metal–organic frameworks (MOFs) into ultrathin metal oxyhydroxide nanosheets for efficient OER has been developed. For two isomeric MOFs ( FJI-H25Fe and FJI-H25FeCo ), only the metastable FJI-H25FeCo bulk can immediately transform into FeCo-oxyhydroxides nanosheets through electric-field assisted hydrolysis. The potential evolution process from MOF bulk to FeCo-oxyhydroxides nanosheets has been investigated in detail. The as-made nanosheets exhibit excellent OER performances, showing an extremely low overpotential of 231 mV at the current density of 10 mA cm−2, a relatively small Tafel slope of 42 mV dec−1, and long-term durability of at least 30 h. This work not only provides a novel strategy for facile preparation of low-cost and efficient OER electrocatalysts, but also represents a new way for preparation of metal oxyhydroxides nanosheets with good crystallinity and morphology, and a fresh method for mild synthesis of nanosized derivatives from MOF materials.  相似文献   

7.
Oxygen evolution reaction (OER) is considered as a critical half-cell reaction of water splitting, the kinetics of which is sluggish even not favored, thus requiring highly active electrocatalysts to shrink the reaction energy barrier and improve the energy conversion efficiency. In this study, In-situ generated trimetallic molybdate nanoflowers on Ni foam by a straightforward and time-saving solvothermal method assisted with microwave, not only bring synergistic effect into full play between multiple metals, but also construct a well-defined nanoflower-like structure accompanied by larger specific area (273.3 m2 g−1) and smaller size than the pristine NiMoO4. The resulting Ni0.9Al0.1MoO4-NF requires a relatively low overpotential of 266 mV for OER at 10 mA cm−2, which outperforms commercial RuO2 catalysts (274 mV). Such excellent performance compares favorably to most previously reported NiMoO4-based electrocatalysts for OER. This work not only supplies a facile method to construct a well-defined nanoflower-like structure on foam, but also broadens our horizons into the mechanism of OER in alkaline conditions.  相似文献   

8.
Oxygen electrocatalysis is of remarkable significance for electrochemical energy storage and conversion technologies, together with fuel cells, metal-air batteries, and water splitting devices. Substituting noble metal-based electrocatalysts by decidedly effective and low-cost metal-based oxygen electrocatalysts is imperative for the commercial application of these technologies. Herein, a novel strategy is presented to fabricate selenized and phosphorized porous cobalt-nickel oxide microcubes by using a sacrificial ZnO spherical template and the resulting microcubes are employed as an oxygen evolution reaction (OER) electrocatalyst. The selenized samples manifest desirable and robust OER performance, with comparable overpotential at 10 mA cm−2 (312 mV) as RuO2 (308 mV) and better activity when the current reaches 13.7 mA cm−2. The phosphorized samples exhibit core–shell structure with low-crystalline oxides inside amorphous phosphides, which ensures superior activity than RuO2 with the same overpotential (at 10 mA cm−2) yet lower Tafel slope. Such a surface doping method possibly will provide inspiration for engineering electrocatalysts applied in water oxidation.  相似文献   

9.
Facile preparation of low‐cost electrocatalysts for efficient oxygen evolution reaction (OER) remains a big challenge. Herein, a novel strategy for ultrafast (20 s) transformation of bulk metal–organic frameworks (MOFs) into ultrathin metal oxyhydroxide nanosheets for efficient OER has been developed. For two isomeric MOFs ( FJI‐H25Fe and FJI‐H25FeCo ), only the metastable FJI‐H25FeCo bulk can immediately transform into FeCo‐oxyhydroxides nanosheets through electric‐field assisted hydrolysis. The potential evolution process from MOF bulk to FeCo‐oxyhydroxides nanosheets has been investigated in detail. The as‐made nanosheets exhibit excellent OER performances, showing an extremely low overpotential of 231 mV at the current density of 10 mA cm?2, a relatively small Tafel slope of 42 mV dec?1, and long‐term durability of at least 30 h. This work not only provides a novel strategy for facile preparation of low‐cost and efficient OER electrocatalysts, but also represents a new way for preparation of metal oxyhydroxides nanosheets with good crystallinity and morphology, and a fresh method for mild synthesis of nanosized derivatives from MOF materials.  相似文献   

10.
Ion regulation strategy is regarded as a promising pathway for designing transition metal oxide-based electrocatalysts for oxygen evolution reaction (OER) with improved activity and stability. Precise anion conditioning can accurately change the anionic environment so that the acid radical ions (SO42−, PO32−, SeO42−, etc.), regardless of their state (inside the catalyst, on the catalyst surface, or in the electrolyte), can optimize the electronic structure of the cationic active site and further increase the catalytic activity. Herein, we report a new approach to encapsulate S atoms at the tetrahedral sites of the NaCl-type oxide NiO to form a tetraoxo-tetrahedral coordination structure (S-O4) inside the NiO (S-NiO -I). Density functional theory (DFT) calculations and operando vibrational spectroscopy proves that this kind of unique structure could achieve the S-O4 and Ni-S stable structure in S-NiO-I. Combining mass spectroscopy characterization, it could be confirmed that the S-O4 structure is the key factor for triggering the lattice oxygen exchange to participate in the OER process. This work demonstrates that the formation of tetraoxygen tetrahedral structure is a generalized key for boosting the OER performances of transition metal oxides.  相似文献   

11.
Electrocatalysts have been developed to improve the efficiency of gas release for oxygen evolution reaction (OER), and finding a simple and efficient method for efficient electrocatalysts has inspired research enthusiasm. Herein, we report bimetallic metal-organic gels derived from phytic acid (PA) and mixed transition metal ions to explore their performance in electrocatalytic oxygen evolution reaction. PA is a natural phosphorus-rich organic compound, which can be obtained from plant seeds and grains. PA reacts with bimetallic ions (Fe3+ and Co2+) in a facile one-pot synthesis under mild conditions to form PA-FeCo bimetallic gels, and the corresponding aerogels are further partially reduced with NaBH4 to improve the electrocatalytic activity. Mixed valence states of Fe(II)/Fe(III) and Co(III)/Co(II) are present in the materials. Excellent OER performance in terms of overpotential (257 mV at 20 mA cm−2) and Tafel slope (36 mV dec−1) is achieved in an alkaline electrolyte. This reduction method is superior to the pyrolysis method by well maintaining the gel morphology structure. This strategy is conducive to the further improvement of the performance of metal-organic electrocatalysts, and provides guidance for the subsequent application of metal-organic gel electrocatalysts.  相似文献   

12.
Electrocatalytic water splitting into H2 and O2 is a key technology for carbon‐neutral energy. Here, we report a modular materials design leading to noble metal‐free composite electrocatalysts, which combine high electrical conductivity, high OER and HER reactivity and high durability. The scalable bottom‐up fabrication allows the stable deposition of mixed metal oxide nanostructures with different functionalities on copper foam electrodes. The composite catalyst shows sustained OER and HER activity in 0.1 m aqueous KOH over prolonged periods (t>10 h) at low overpotentials (OER: ≈300 mV; HER: ≈100 mV) and high faradaic efficiencies (OER: ≈100 %, HER: ≈98 %). The new synthetic concept will enable the development of multifunctional, mixed metal oxide composites as high‐performance electrocatalysts for challenging energy conversion and storage reactions.  相似文献   

13.
《化学:亚洲杂志》2017,12(20):2720-2726
Iron‐based (oxy)hydroxides are especially attractive electrocatalysts for the oxygen evolution reaction (OER) owing to their earth abundance, low cost, and nontoxicity. However, poor OER kinetics on the surface restricts the performance of the FeOOH electrocatalyst. Herein, a highly efficient and stable Ni(OH)2/β‐like FeOOH electrocatalyst is obtained by facile electroactivation treatment. The activated Ni(OH)2/β‐like FeOOH sample indicates an overpotential of 300 mV at 10 mA cm−2 for the OER, and no clear current decay after 50 h of testing; this is comparable to the most efficient nickel‐ and cobalt‐based electrocatalysts on planar substrates. Furthermore, studies suggest that β‐like FeOOH plays a key role in remarkably enhancing the performance during the electroactivation process owing to its metastable tunnel structure with a lower barrier for interface diffusion of Ni2+ ions between the bilayer electrocatalyst. This study develops a new strategy to explore efficient and low‐cost electrocatalysts and deepens understanding of bilayer electrocatalysts for the OER.  相似文献   

14.
Simple and stable synthesis of transition metal sulfides and clarification of their growth mechanisms are of great importance for developing catalysts, metal‐air batteries and other technologies. In this work, we developed a one‐step facile hydrothermal approach to successfully synthesize NiS2 microspheres. By changing the experimental parameters, the reason that affects the formation of nanostructured spheres is investigated and discussed in detail, and the formation mechanism of microspheres is proposed innovatively. Furthermore, electrochemical testing results show that the 7 h‐NiS2 catalyst exhibits a remarkable oxygen evolution reaction (OER) activity with an overpotential of 311 mV at 10 mA cm?2 in 1.0 M KOH, superior to precious metal RuO2. The NiS2 catalyst also exhibits a robust durability. This work will contributes to the rational design and the understanding of growth mechanism of transition metal chalcogenide electrocatalysts for diverse energy conversion technologies.  相似文献   

15.
The oxygen evolution reaction (OER) has been explored extensively for reliable hydrogen supply to boost the energy conversion efficiency. The superior OER performance of newly developed non‐noble metal electrocatalysts has concealed the identification of the real active species of the catalysts. Now, the critical active phase in nickel‐based materials (represented by NiNPS) was directly identified by observing the dynamic surface reconstruction during the harsh OER process via combining in situ Raman tracking and ex situ microscopy and spectroscopy analyses. The irreversible phase transformation from NiNPS to α‐Ni(OH)2 and reversible phase transition between α‐Ni(OH)2 and γ‐NiOOH prior to OER demonstrate γ‐NiOOH as the key active species for OER. The hybrid catalyst exhibits 48‐fold enhanced catalytic current at 300 mV and remarkably reduced Tafel slope to 46 mV dec?1, indicating the greatly accelerated catalytic kinetics after surface evolution.  相似文献   

16.
《中国化学快报》2020,31(10):2641-2644
The high cost and low reserves of noble metals greatly hinder their practical applications in new energy production and conversion. The exploration of cost-effective alternative electrocatalysts with the ability to drive hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is extremely significant to promote overall water splitting. Herein, ultrathin CoSe2/CNTs nanocomposites have been synthesized by a facile two-step method, where the ultrathin Co-MOF (metal organic-framework) decorated with cable-like carbon nanotubes (CNTs) (Co-MOF/CNTs) was initially fabricated, and followed a low-temperature selenization process. The ultrathin CoSe2 nanosheets as well as the superior conductivity of CNTs synergistically resulted in abundant active sites and enhanced conductivity to boost the electrocatalytic activity. The as-prepared CoSe2/CNTs electrocatalysts exhibited an overpotential of 190 mV and 300 mV vs. reversible hydrogen electrode (RHE) at a current density of 10 mA/cm2 for the HER and OER in alkaline solution, respectively, and demonstrated superior durability. Furthermore, the as-prepared bifunctional CoSe2/CNTs electrocatalysts can act as cathode and anode in an electrolyzer, showing a cell voltage of 1.75 V at 10 mA/cm2 for overall water splitting.  相似文献   

17.
The energy crisis and environmental pollution have forced scientists to explore alternative energy conversion and storage devices. The anodic reactions of these devices are all oxygen evolution reactions (OER), so the development of efficient OER electrocatalysts is of great significance. At the same time, understanding the reaction mechanism of OER is conducive to the rational design of efficient OER electrocatalysts. In general, catalytic active centers play a direct role in OER performance. In this paper, a series of stable bimetallic metal–organic frameworks (MOFs, named as Fe3-Con-X2, n=2, 3 and X=F, Cl, Br) with similar structure were synthesized by changing the halogen coordinated with the cobalt metal active center, aiming to investigate the influence of halogen substitution effect on OER performance. It was found that the OER activity of Fe3-Co3-F2 is much better than Fe3-Co2-Cl2 and Fe3-Co2-Br2, indicating that the regulation of the electronegativity change of the coordination halogen atom can regulate the coordination electron structure of the metal active center, thereby achieving effective regulation of OER performance.  相似文献   

18.
Electrocatalytic water oxidation is critically important for a wide range of emerging energy conversion devices. Co-based metal oxides are very promising candidates as high-performance oxygen evolution reaction (OER) catalysts. Here, it is shown that chemical oxidation of layered P2-NaxCoO2 could lead to compositionally tunable P2-NaxCoO2 with high OER activity. The optimal electrocatalytic activity emerges in a narrow range of sodium concentrations with Na0·28CoO2 exhibiting the lowest overpotential of 350 mV at 10 mA/cm2 and a Tafel slope of 29 mV/dec in 0.1 M NaOH electrolyte, outperforming the benchmark RuO2 catalyst and previous LiCoO2-based electrocatalysts. Electrochemical measurements and X-ray spectroscopic investigations reveal that chemically oxidized P2-NaxCoO2 catalysts are intrinsically active toward OER, arising from the abundant oxygen vacancies, increased Co-O covalency, and enhanced conductivity after deintercalation of the Na+. Our findings provide new insights into the design and synthesis of cost-effective catalysts toward efficient and durable OER.  相似文献   

19.
Designing highly efficient electrocatalysts for oxygen evolution reaction (OER) plays a key role in the development of various renewable energy storage and conversion devices. In this work, we developed metallic Co4N porous nanowire arrays directly grown on flexible substrates as highly active OER electrocatalysts for the first time. Benefiting from the collaborative advantages of metallic character, 1D porous nanowire arrays, and unique 3D electrode configuration, surface oxidation activated Co4N porous nanowire arrays/carbon cloth achieved an extremely small overpotential of 257 mV at a current density of 10 mA cm−2, and a low Tafel slope of 44 mV dec−1 in an alkaline medium, which is the best OER performance among reported Co‐based electrocatalysts to date. Moreover, in‐depth mechanistic investigations demonstrate the active phases are the metallic Co4N core inside with a thin cobalt oxides/hydroxides shell during the OER process. Our finding introduces a new concept to explore the design of high‐efficiency OER electrocatalysts.  相似文献   

20.
Cost‐effective electrocatalysts for the oxygen evolution reaction (OER) are critical to energy conversion and storage processes. A novel strategy is used to synthesize a non‐noble‐metal‐based electrocatalyst of the OER by finely combining layered FeNi double hydroxide that is catalytically active and electric conducting graphene sheets, taking advantage of the electrostatic attraction between the two positively charged nanosheets. The synergy between the catalytic activity of the double hydroxide and the enhanced electron transport arising from the graphene resulted in superior electrocatalytic properties of the FeNi‐GO hybrids for the OER with overpotentials as low as 0.21 V, which was further reduced to 0.195 V after the reduction treatment. Moreover, the turnover frequency at the overpotential of 0.3 V has reached 1 s?1, which is much higher than those previously reported for non‐noble‐metal‐based electrocatalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号