首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Although the production of near-infrared (NIR)-absorbing organic polymers with an excellent nonlinear optical (NLO) response is vital for various optoelectronic devices and photodynamic therapy, the molecular design and relevant photophysical investigation still remain challenging. In this work, large NLO activity is observed for an NIR-absorbing bithiophene-based polymer with a unique head-to-head linkage in the NIR region. The saturable absorption coefficient and modulation depth of the polymer are determined as ∼−3.5×105 cm GW−1 and ∼32.43%, respectively. Notably, the polymer exhibits an intrinsic nonlinear refraction index up to ∼−9.36 cm2 GW−1, which is six orders of magnitude larger than that of CS2. The maximum molar-mass normalized two-photon absorption cross-section (σ2/M) of this polymer can be up to ∼14 GM at 1200 nm. Femtosecond transient absorption measurements reveal significant spectral overlap between the 2PA and excited state absorption in the 1000–1400 nm wavelength range and an efficient triplet quantum yield of ∼36.7%. The results of this study imply that this NIR-absorbing polymer is promising for relevant applications.  相似文献   

2.
合成了一系列具有刚性结构的推拉型1,2,3,4-四氢喹啉-4-酮衍生物: 1-苄基-1,2,3,4-四氢喹啉-4-酮(BTHQ)、2-(1,2,3,4-四氢喹啉-4-叶立德)丙二腈(THQM)、1,6-二羰基久洛尼定(DOJ)和1,6-二(二氰甲烯基叶立德)久洛尼定(BDCJ).测定了其吸收光谱、单光子荧光光谱和双光子上转换荧光光谱. 这类化合物的单双光子荧光参数都存在着很强的、规则的溶剂效应, 表明分子激发态可能存在较大的极性. 它们的二氯甲烷溶液在800 nm飞秒激光(150 fs)照射下, 能够发射出很强的双光子上转换荧光. 采用非线性透过率法测得四个化合物的双光子吸收截面在0.83~23.95×10-50 cm4•s•photon-1之间. 这类化合物的激发态存在有效的分子内电荷转移, 对双光子吸收和双光子荧光发射有较大贡献.  相似文献   

3.
A novel two-branched twistacene (PyDN) has been designed and synthesized for application on ultrafast optical limiting. This twistacene exhibits excellent two photon absorption and two photon absorption-induced excited singlet state absorption, which was systematically investigated with a femtosecond Z-scan experiment, transient absorption spectrum, and two-photon excited fluorescence experiments. The admirable two photon absorption is attributed to the high degree of π electron delocalization in twistacene which is caused by introduction of two strong donors. The excited singlet state absorption cooperates with two-photon absorption to provide an excellent ultrafast optical limiting behavior with high linear transmittance, where the thresholds are 2.3–5.3 mJ/cm2 in the spectral region of 532–800 nm of femtosecond laser and 133 mJ/cm2 for picosecond pulse at 532 nm. These thresholds are lower than that of most of the optical limiters reported previously, which indicates PyDN is a promising candidate for ultrafast optical limiting.  相似文献   

4.
设计并合成了一系列含不同末端给电子基团及共轭链长度的1,1-二腈基-2,2-二苯基乙烯类化合物(D1-D7),用核磁共振氢谱(1H NMR)、核磁共振碳谱(13C NMR)和高分辨质谱(HRMS)对分子结构进行了表征.选用N,N-二甲基甲酰胺(DMF)为溶剂,测定了它们的线性光物理性质,用光漂白法研究了它们的光稳定性,用热失重法测试了它们的热稳定性.研究了这7个化合物针对800 nm脉冲激光(掺钛蓝宝石激光器,脉冲宽度~130 fs,重复频率1000 Hz)的光限幅性质.结果表明:以二烷基氨基为给电子基团的4个化合物(D4-D7)对800 nm的飞秒脉冲激光均具有显著的光限幅性能,限幅机制为双光子吸收(2PA),而端基给电子能力较弱、共轭链长较短的D1-D3光限幅效果并不明显.此外,D4-D7都具有较好的热稳定性和光稳定性.而且,该系列化合物的双光子吸收截面、光稳定性和热稳定性都具有随分子结构中给电子基团增强或共轭链增长而增大或提高的趋势.D7具有最好的综合性能,是一个有应用潜力的光限幅材料.  相似文献   

5.
The synthesis, linear photophysical, two‐photon absorption (2PA), femtosecond transient absorption, and superfluorescence properties of a new symmetrical squaraine derivative ( 1 ) are reported. Steady‐state linear spectral and photochemical properties, fluorescence lifetimes, and excitation anisotropy of 1 were investigated in various organic solvents. High fluorescence quantum yields (≈0.7) and very high photostability (photodecomposition quantum yields ≈10?6–10?8) were observed. An open‐aperture Z‐scan method was used to obtain 2PA spectra of 1 over a broad spectral range (maximum 2PA cross section ≈1000 GM). Excited‐state absorption (ESA) and gain was observed by femtosecond transient absorption spectroscopy, in which both reached a maximum at approximately 500 fs. Squaraine 1 exhibits efficient superfluorescence. The quantum chemical study of 1 revealed the simulated vibronic nature of the 1PA and 2PA spectra were in good agreement with experimental data; this may provide the ability to predict potential advanced photonic materials.  相似文献   

6.
Four 1,8‐naphthalimide hydrazone molecules with different electron‐donating groups have been applied in the study of linear and nonlinear optical (NLO) properties. These compounds showed strong green emission in solution. Their NLO properties such as two‐photon absorption (TPA) behavior with femtosecond laser pulses ca. 800 nm and excited‐state absorption (ESA) behavior with nanosecond laser pulses at 532 nm were investigated. Compound 4 presented the largest two‐photon cross section (550 GM) among them due to two factors: the conjugated length of compound 4 is the longest and the electron‐donating ability of compound 4 is the strongest. Different from TPA behavior, compound 2 showed the best nonlinear absorption properties at 532 nm and its nonlinear absorption coefficient and third‐order nonlinear optical susceptibilities χ (3) were up to 1.41×10?10 MKS and 4.65×10?12 esu, respectively. Through the modification of the structure, the nonlinear optical properties of these compounds at different wavelengths (532 and 800 nm) were well tuned. The great broad‐band nonlinear optical properties indicate hydrazones are good candidates for organic nonlinear optical absorption materials.  相似文献   

7.
Quantum-chemical calculations of the two-photon absorption (TPA) cross-sections are used to determine the characteristics of the electronic excited states responsible for the observed peaks in the TPA spectra of two bis-dioxaborine-substituted biphenyl derivatives. We find two distinct TPA-active states with very different TPA cross-sections: the difference is explained on the basis of electron correlation. These effects, on the one hand, lead to TPA cross-sections of up to 500 x 10(-50) cm4 s photon(-1) for the state favored by correlation; on the other hand, they limit the overall cross-sections achievable in this class of materials.  相似文献   

8.
Lifetimes of the lowest excited singlet (S1) electronic states of various derivatives of the pyrimidine nucleobase cytosine (Cyt) were measured by the femtosecond transient absorption technique. The bases were excited in room-temperature aqueous solution at 265 nm using approximately 200 fs pump pulses from a titanium-sapphire laser system. The decay of excited-state absorption (ESA) at visible probe wavelengths was used to determine the S1 lifetimes of a variety of modified Cyt compounds at different pH values by global fitting. Identical lifetimes were observed for Cyt and cytidine (Cyd) within experimental uncertainty, but ESA by the ribonucleoside was considerably stronger, suggesting that the ribose group increases the oscillator strength of the S1 --> SN transition. The S1 lifetime of the important minor base 5-methylcytosine (m5Cyt) is 7.2 +/- 0.4 ps at pH 6.8. The same lifetime was measured for the ribonucleoside 5-methylcytidine, but sugar substitution again increased the strength of the ESA signal. Protonation of Cyd and m5Cyt at low pH led to a modest decrease in their S1 lifetimes. On the other hand, deprotonation of Cyt and m5Cyt significantly increased the lifetime of their respective S1 states. These trends support the intermediacy of the n,pi* state localized on the carbonyl oxygen in the nonradiative decay mechanism of Cyt. Longer S1 lifetimes were observed for 5-fluorocytosine and N4-acetylcytosine. Collectively, these results illustrate the great potential of femtosecond laser spectroscopy for investigating excited-state dynamics in DNA and DNA components.  相似文献   

9.
A bright near-infrared (NIR) fluorescent molecule was developed based on the donor–acceptor–donor (D–A–D) approach using an aza-BODIPY analog called pyrrolopyrrole aza-BODIPY (PPAB) as an electron-accepting chromophore. Directly introducing electron-donating triphenylamine (TPA) to develop a D–A–D structure caused redshifts of absorption and emission of PPAB into the NIR region with an enhanced fluorescence brightness of up to 5.2×104 m −1 cm−1, whereas inserting a phenylene linker between the TPA donor and the PPAB acceptor induced solvatochromic behavior in emission. Transient absorption spectra and theoretical calculations revealed the presence of a highly emissive hybridized locally excited and charge-transfer state in the former case and the contribution of the dark charge-separated state to the excited state in the latter case. The bright D–A–D PPAB as a novel emitter resulted in a NIR electroluminescence with a high external quantum efficiency of 3.7 % and a low amplified spontaneous emission threshold of ca. 80 μJ cm−2, indicating the high potential for NIR optoelectronic applications.  相似文献   

10.
A platinum complex with the 6‐(7‐benzothiazol‐2′‐yl‐9,9‐diethyl‐9H‐fluoren‐2‐yl)‐2,2′‐bipyridinyl ligand ( 1 ) was synthesized and the crystal structure was determined. UV/Vis absorption, emission, and transient difference absorption of 1 were systematically investigated. DFT calculations were carried out on 1 to characterize the electronic ground state and aid in the understanding of the nature of low‐lying excited electronic states. Complex 1 exhibits intense structured 1π–π* absorption at λabs<440 nm, and a broad, moderate 1M LCT/1LLCT transition at 440–520 nm in CH2Cl2 solution. A structured 3ππ*/3M LCT emission at about 590 nm was observed at room temperature and at 77 K. Complex 1 exhibits both singlet and triplet excited‐state absorption from 450 nm to 750 nm, which are tentatively attributed to the 1π–π* and 3π–π* excited states of the 6‐(7‐benzothiazol‐2′‐yl‐9,9‐diethyl‐9H‐fluoren‐2‐yl)‐2,2′‐bipyridine ligand, respectively. Z‐scan experiments were conducted by using ns and ps pulses at 532 nm, and ps pulses at a variety of visible and near‐IR wavelengths. The experimental data were fitted by a five‐level model by using the excited‐state parameters obtained from the photophysical study to deduce the effective singlet and triplet excited‐state absorption cross sections in the visible spectral region and the effective two‐photon absorption cross sections in the near‐IR region. Our results demonstrate that 1 possesses large ratios of excited‐state absorption cross sections relative to that of the ground‐state in the visible spectral region; this results in a remarkable degree of reverse saturable absorption from 1 in CH2Cl2 solution illuminated by ns laser pulses at 532 nm. The two‐photon absorption cross sections in the near‐IR region for 1 are among the largest values reported for platinum complexes. Therefore, 1 is an excellent, broadband, nonlinear absorbing material that exhibits strong reverse saturable absorption in the visible spectral region and large two‐photon‐assisted excited‐state absorption in the near‐IR region.  相似文献   

11.
A comprehensive analysis of the well-known open aperture Z-scan method, using a modified equation for the change in transmittance, is presented and accounts for discrepancies in two-photon absorption (2PA) cross sections between picosecond and femtosecond excitation. This new approach takes into account excited-state absorption and stimulated emission of the molecules studied. The two-photon absorption cross-section spectra of a series of six fluorene-based derivatives, determined using picosecond pulses, over a broad spectral range (500-900 nm), and this approach using a modified fitting procedure in the open aperture Z-scan is reported. We demonstrate that the fluorene derivatives exhibit two-photon absorption cross-section values between 700 and 5000 GM, when excited into the two-photon allowed electronic state. Excitation anisotropy spectra, measured to investigate the nature of the observed linear and nonlinear absorption bands, are presented and provide insight into the 2PA process.  相似文献   

12.
Fusion of two N‐annulated perylene (NP) units with a fused porphyrin dimer along the S0–S1 electronic transition moment axis has resulted in new near‐infrared (NIR) dyes 1 a / 1 b with very intense absorption (ε>1.3×105 M ?1 cm?1) beyond 1250 nm. Both compounds displayed moderate NIR fluorescence with fluorescence quantum yields of 4.4×10?6 and 6.0×10?6 for 1 a and 1 b , respectively. The NP‐substituted porphyrin dimers 2 a / 2 b have also been obtained by controlled oxidative coupling and cyclodehydrogenation, and they showed superimposed absorptions of the fused porphyrin dimer and the NP chromophore. The excited‐state dynamics of all of these compounds have been studied by femtosecond transient absorption measurements, which revealed porphyrin dimer‐like behaviour. These new chromophores also exhibited good nonlinear optical susceptibility with large two‐photon absorption cross‐sections in the NIR region due to extended π‐conjugation. Time‐dependent density functional theory calculations have been performed to aid our understanding of their electronic structures and absorption spectra.  相似文献   

13.
We have performed a study of the one- and two-photon absorption properties of a systematically varied series of triarylamino-compounds with one, two, or three attached diarylborane arms arranged in linear dipolar, bent dipolar, and octupolar geometries. Two-photon fluorescence excitation spectra were measured over a wide spectral range with femtosecond laser pulses. We found that on going from the single-arm to the two- and three-arm systems, the peak in two-photon absorption (2PA) cross-section is suppressed by factors of 3-11 for the lowest excitonic level associated with the electronic coupling of the arms, whereas it is enhanced by factors of 4-8 for the higher excitonic level. These results show that the coupling of arms redistributes the 2PA cross-section between the excitonic levels in a manner that strongly favors the higher-energy excitonic level. The experimental data on one- and two-photon cross-sections, ground- and excited-state transition dipole moments, and permanent dipole moment differences between the ground and the lowest excited states were compared to the results obtained from a simple Frenkel exciton model and from highly correlated quantum-chemical calculations. It has been found that planarization of the structure around the triarylamine moiety leads to a sizable increase in peak 2PA cross-section for the lowest excitonic level of the two-arm system, whereas for the three-arm system, the corresponding peak was weakened and shifted to lower energy. Our studies show the importance of the interarm coupling, number of arms, and structural planarity on both the enhancement and the suppression of two-photon cross-sections in multiarm molecules.  相似文献   

14.
Using the time-dependent quantum wave packet method, the photoassociation (PA) processes of He + H +→ HeH+ and He + D +→ HeD+, driven by the sin2-shaped femtosecond laser pulse in the electronic ground state, including multiphoton transitions and dissociations, are investigated for a wide range of initial collision momenta spanning from 1 to 4 a.u. (or for the collision energy roughly in the ranges of 0.009∼0.148 eV and 0.006∼0.089 eV for HeH+ and HeD+ systems, respectively). It is found that, at some collision momenta, multiphoton transitions to deeply bound states are inevitable to occur and can greatly decrease the PA probability of the target state that selected is the vibrational state v = 6. For the dissociation process, the higher-order (two- and three-photon) dissociations, measured from the target state, tend to be significant at relative high collision energies, which implies that above-threshold dissociations may also be an important loss mechanism in the PA process. In addition, it is also shown that the higher-order dissociation is much stronger for HeH+ systems than that for HeD+ systems at a given collision momentum, and could be enhanced by the strong transitions among deeply bound states.  相似文献   

15.
Transient absorption spectroscopy is used to study the excited‐state dynamics of Co3(dpa)4(NCS)2, where dpa is the ligand di(2‐pyridyl)amido. The ππ*, charge‐transfer, and d–d transition states are excited upon irradiation at wavelengths of 330, 400 and 600 nm, respectively. Similar transient spectra are observed under the experimental temporal resolution and the transient species show weak absorption. We thus propose that a low‐lying metal‐centered d–d state is accessed immediately after excitation. Analyses of the experimental kinetic traces reveal rapid conversion from the ligand‐centered ππ* and the charge‐transfer states to this metal‐centered d‐d state within 100 fs. The excited molecule then crosses to a second d–d state within the ligand‐field manifold, with a time coefficient of 0.6–1.4 ps. Because the ground‐state bleaching band recovers with a time coefficient of 10–23 ps, we propose that an excited molecule crosses from the low‐lying d–d state either directly within the same spin system or with spin crossing via the state 2B to the ground state 2A2 (symmetry group C4). In this trimetal string complex, relaxation to the ground electronic surface after excitation is thus rapid.  相似文献   

16.
Liquid crystals are known to possess large electronic optical non-linearities. Transient photoinduced absorption is not commonly applied to liquid crystals, but it is a powerful technique by which to examine the excited-state absorption (ESA) and hence the non-linear absorption of molecular systems. We show that measurements of this kind can give an insight into the dominant mechanisms of picosecond non-linear optical response in liquid crystals, and together with semi-empirical quantum chemical calculations appropriate assignments of the absorptions can be made. In particular, we report measurements of the transient ESA of the liquid crystal CB15 [4-(2-methylbutyl)-4-cyanobiphenyl] in its isotropic phase using femtosecond pump-probe spectroscopy in the wavelength range from 400 to 1000 nm. By pumping directly into the first excited state (S1) we identify at least four transient ESAs which contribute to the non-linear response up to a time of 1 ns after excitation. These features show a linear dependence with pump intensity. There also exists weak two-photon absorption (TPA) into S1 at 650 nm, giving a similar ESA. Furthermore, we show that a semi-empirical quantum-chemical treatment of a single molecular unit of CB15 using the AMI Hamiltonian gives good agreement with the observed spectra, and implies that the dominant ESA in the picosecond regime can be attributed principally to singlet-singlet transitions from monomer units; but there is also a possible contribution to the ESAs by excimer absorption. On the time scale of our experiment we see no evidence of triplet-triplet absorptions, and we have also measured a fluorescence quantum yield of 20%.  相似文献   

17.
以N-乙基咔唑为原料,通过室温固相化学反应改进合成了2种双光子吸收材料(咔唑类衍生物2, 8-二[2'-(吡啶-4"-基)乙烯基]-5-乙基咔唑(L1),2, 8-二[2'-(吡啶-2"-基)乙烯基]-5-乙基咔唑(L2),其结构经1H NMR,IR和MS确证,利用Z-扫描技术,测试了其纳秒下的双光子吸收截面为6 210和5 590 GM (1 GM = 1 ´ 10 -50 cm 4 · s · photon -1),用820 nm的飞秒单脉冲激光作为写入激光对存储介质进行双光子光漂白,对其作为三维光存储材料作了初步的探索。  相似文献   

18.
The linear and non‐linear optical properties of a family of dumbbell‐shaped dinuclear complexes, in which an oligothiophene chain with various numbers of rings (1, 3, and 6) acts as a bridge between two homoleptic tris(2,2′‐bipyridine)ruthenium(II) complexes, have been fully investigated by using a range of spectroscopic techniques (absorption and luminescence, transient absorption, Raman, and non‐linear absorption), together with density functional theory calculations. Our results shed light on the impact of the synergistic collaboration between the electronic structures of the two chemical moieties on the optical properties of these materials. Experiments on the linear optical properties of these compounds indicated that the length of the oligothiophene bridge was critical for luminescent behavior. Indeed, no emission was detected for compounds with long oligothiophene bridges (compounds 3 and 4 , with 3 and 6 thiophene rings, respectively), owing to the presence of the 3π? π* state of the conjugated bridge below the 3MLCT‐emitting states of the end‐capping RuII complexes. In contrast, the compound with the shortest bridge ( 2 , one thiophene ring) shows excellent photophysical features. Non‐linear optical experiments showed that the investigated compounds were strong non‐linear absorbers in wide energy ranges. Indeed, their non‐linear absorption was augmented upon increasing the length of the oligothiophene bridge. In particular, the compound with the longest oligothiophene bridge not only showed strong two‐photon absorption (TPA) but also noteworthy three‐photon‐absorption behavior, with a cross‐section value of 4×10?78 cm6 s2 at 1450 nm. This characteristic was complemented by the strong excited‐state absorption (ESA) that was observed for compounds 3 and 4 . As a matter of fact, the overlap between the non‐linear absorption and ESA establishes compounds 3 and 4 as good candidates for optical‐power‐limiting applications.  相似文献   

19.
A comprehensive study of the molecular structure of aza-BODIPY and its derivatives, obtained by introduction of one or more substituents, was carried out. We considered the changes in the characteristics of the electronic and geometric structure of the unsubstituted aza-BODIPY introducing the following substituents into the dipyrrin core; phenyl, 2-thiophenyl, 2-furanyl, 3-pyridinyl, 4-pyridinyl, 2-pyridinyl, and ethyl groups. The ground-state geometries of the unsubstituted Aza-BODIPY and 27 derivatives were computed at the PBE/6-31G(d) and CAM-B3LYP/6-31+G(d,p) levels of theory. The time-dependent density-functional theory (TDDFT) together with FC vibronic couplings was used to investigate their absorption and emission spectra.  相似文献   

20.
A set of monodisperse bent donor–acceptor–donor‐type conjugated borazine oligomers, BnNn+1 (n=1–4), incorporating electron‐rich triarylamine donor and electron‐deficient triarylborane acceptor units has been prepared through an iterative synthetic approach that takes advantage of highly selective silicon–boron and tin–boron exchange reactions. The effect of chain elongation on the electrochemical, one‐ and two‐photon properties and excited‐state photodynamics has been investigated. Strong intramolecular charge transfer (ICT) from the arylamine donors to boryl‐centered acceptor sites results in emissions with high quantum yields (Φfl>0.5) in the range of 400–500 nm. Solvatochromic effects lead to solvent shifts as large as ~70 nm for the shortest member (n=1) and gradually decrease with chain elongation. The oligomers exhibit strong two‐photon absorption (2PA) in the visible spectral region with 2PA cross sections as large as 1410 GM (n=4), and broadband excited‐state absorption (ESA) attributed to long‐lived singlet–singlet and radical cation/anion absorption. The excited‐state dynamics also show sensitivity to the solvent environment. Electrochemical observations and DFT calculations (B3LYP/6‐31G*) reveal spatially separated HOMO and LUMO levels resulting in highly fluorescent oligomers with strong ICT character. The BnNn+1 oligomers have been used to demonstrate the detection of cyanide anions with association constants of log K>7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号