首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development of flexible, room-temperature phosphorescence (RTP) materials remains challenging owing to the quenching of their unstable triplet excitons via molecular motion. Therefore, a polymer matrix with Tg higher than room temperature is required to prevent polymer segment movement. In this study, a RTP material was developed by incorporating a 4-biphenylboronic acid (BPBA) phosphor into a poly(vinylidene fluoride) (PVDF) matrix (Tg=−27.1 °C), which exhibits a remarkable UV-light-dependent oxygen consumption phosphorescence with a lifetime of 1275.7 ms. The adjustable RTP performance is influenced by the crystallinity and polymorph (α, β, and γ phases) fraction of PVDF, therefore, the low Tg of the PVDF matrix enables the polymeric segmental motion upon microwave irradiation. Consequently, a reduction in the crystallinity and an increase in the α phase fraction in PVDF film induces RTP after 2.45 GHz microwave irradiation. These findings open up new avenues for constructing crystalline and phase-dependent RTP materials while demonstrating a promising approach toward microwave detection.  相似文献   

2.
The excited states of UV absorber, ethylhexyl methoxycrylene (EHMCR) have been studied through measurements of UV absorption, fluorescence, phosphorescence and electron paramagnetic resonance (EPR) spectra in ethanol. The energy levels of the lowest excited singlet (S1) and triplet (T1) states of EHMCR were determined. The energy levels of the S1 and T1 states of EHMCR are much lower than those of photolabile 4‐tert‐butyl‐4′‐methoxydibenzoylmethane. The energy levels of the S1 and T1 states of EHMCR are lower than those of octyl methoxycinnamate. The weak phosphorescence and EPR Bmin signals were observed and the lifetime was estimated to be 93 ms. These facts suggest that the significant proportion of the S1 molecules undergoes intersystem crossing to the T1 state, and the deactivation process from the T1 state is predominantly radiationless. The photostability of EHMCR arises from the 3ππ* character in the T1 state. The zero‐field splitting (ZFS) parameter in the T1 state is D** = 0.113 cm?1.  相似文献   

3.
Abstract— Pyrazinopsoralen (PzPs), a new monofunctional psoralen, has a UV absorption spectrum similar to other psoralens except that it absorbs more strongly in the long-UVA than 8-methoxypsoralen. The solvent effects on the UV absorption and fluorescence emission spectra indicate that the lowest excited singlet state is the π,π* state like other psoralen derivatives. It shows a much lower fluorescence quantum yield (0.0008 in ethanol at room temperature) than the other psoralens as expected by the increased proximity effect (vibronic perturbation) due to close 1(n,π*) to 1(π,π*) states. The fluorescence lifetime was 1.05 ns in methylcyclohexane with a single exponential decay, while more than two components were observed in other solvents with the short-lived component being the major (>95%). The triplet state of PzPs could not be detected by phosphorescence, laser flash excitation (T-T absorption) and singlet oxygen formation probably due to very low φisc, or short lifetime of the triplet state (τT) caused by the fast T1→ S0 intersystem crossing.  相似文献   

4.
Pure organic materials with intrinsic room‐temperature phosphorescence typically rely on heavy atoms or heteroatoms. Two different strategies towards constructing organic room‐temperature phosphorescence (RTP) species based upon the through‐space charge transfer (TSCT) unit of [2.2]paracyclophane (PCP) were demonstrated. Materials with bromine atoms, PCP‐BrCz and PPCP‐BrCz, exhibit RTP lifetime of around 100 ms. Modulating the PCP core with non‐halogen‐containing electron‐withdrawing units, PCP‐TNTCz and PCP‐PyCNCz, successfully elongate the RTP lifetime to 313.59 and 528.00 ms, respectively, the afterglow of which is visible for several seconds under ambient conditions. The PCP‐TNTCz and PCP‐PyCNCz enantiomers display excellent circular polarized luminescence with dissymmetry factors as high as ?1.2×10?2 in toluene solutions, and decent RTP lifetime of around 300 ms for PCP‐TNTCz enantiomers in crystalline state.  相似文献   

5.
A D‐A‐D′ type pure organic molecule, named ODFRCZ, has unique triple‐emission character covering fluorescence, phosphorescence, and delayed fluorescence (DF). The phosphorescence of ODFRCZ has a rather long lifetime of about 350 ms at room temperature. One dimer of ODFRCZ with enhanced parallel molecular packing acts more effectively to prompt ISC processes, which further generates room‐temperature phosphorescence (RTP), owing to the larger transition dipole moment and closer energy level between S1 and Tn. ODFRCZ is a rare example of an organic RTP molecule that shows dual‐stimuli responsiveness of dual‐mode mechanochromism (fluorescence red‐shift and RTP/DF on‐off switch) and reversible crystal‐state photochromism. This work may broaden the knowledge for stimuli‐responsive RTP organic molecules and lay the foundation for their wide‐scale applications.  相似文献   

6.
A D‐A‐D′ type pure organic molecule, named ODFRCZ, has unique triple‐emission character covering fluorescence, phosphorescence, and delayed fluorescence (DF). The phosphorescence of ODFRCZ has a rather long lifetime of about 350 ms at room temperature. One dimer of ODFRCZ with enhanced parallel molecular packing acts more effectively to prompt ISC processes, which further generates room‐temperature phosphorescence (RTP), owing to the larger transition dipole moment and closer energy level between S1 and Tn. ODFRCZ is a rare example of an organic RTP molecule that shows dual‐stimuli responsiveness of dual‐mode mechanochromism (fluorescence red‐shift and RTP/DF on‐off switch) and reversible crystal‐state photochromism. This work may broaden the knowledge for stimuli‐responsive RTP organic molecules and lay the foundation for their wide‐scale applications.  相似文献   

7.
An attempt is reported to explain the main intensity patterns in the phosphorescence spectra of 2,4-, 2,5- and 3,4-dimethyl-benzaldehyde-1h1 and -1d1, observed previously. The analysis is based on CNDO and MINDO calculations of (transition) dipole moments, spin-orbit couplings, vibronic couplings, state energies, normal coordinates and vibrational frequencies. Where possible these quantities are empirically checked and corrected. Additional information, especially about the separation of the closely spaced T1(3ππ*) and T2(3*) states, is obtained from phosphorescence excitation spectra reported here for all six isomers. The phosphorescence spectra consist of two components, an “allowed” component of 3ππ* and a “forbidden” component of 3* symmetry. It is concluded that the allowed component is partly induced by the crystal field. The forbidden component is vibronically induced by out-of-plane vibrations among which the aldehydic CH(CD)-wag mode is the most active. The observed intensity patterns for this component are ascribed to interference between two mechanisms, one involving vibronic coupling between S0 and S1(1*) and spin-orbit coupling between S1 and T1, the other involving vibronic coupling between T1 and T2 and spin-orbit coupling between S0 and T2. Within the groups of either 1h1 or 1d1 isomers, the main changes in the spectrum are shown to be due to the change in T1–T2 energy separation. The changes observed upon deuterium substitution in the aldehyde group involve, in addition to changes in the T1–T2 gap, changes in vibronic coupling due to normal-coordinate mixing. All these spectral changes are reproduced by calculations based on a mixture of theoretical and empirical input parameters, derived from, or at least consistent with, other observations, including excitation spectra, dipole moments and zero-field splittings. It is concluded that the mechanisms underlying these calculations offer a satisfactory explanation of the observed intensity patterns in the phosphorescence spectra of dimethylbenzaldehydes.  相似文献   

8.
The photophysical properties of bonellin, a free-base chlorin, were studied in ethanolic solution. For the singlet excited state the following data were determined: an energy level, EBS= 187 ± 2kJ mol-1, a lifetime, τf= 6.3± 0.1ns at 298 K, and fluorescence quantum yields, φr= 0.07 ± 0.02 (298 K) and 0.20 ± 0.04 (77 K). The S1→ T intersystem crossing quantum yield was φisc= 0.85 ± 0.1. No phosphorescence was observed at 298 K and 77 K. Based on quenching experiments the triplet state energy level was determined to be EBT= 180 ± 20 kJ mol-1. A unimolecular decay rate constant, k1= (2.3 ± 0.5)· 103 s-1 at room temperature, and a molar absorption coefficient, εT443= 9500 ± 500 M-1 cm-1, were obtained for the triplet state. This species was quenched by O2 with ko2= (1.7 ±0.3)· 108M-1 s-1, and by benzoquinone with kq= (5.2 ± 0.3)-109M-1 s-1. The latter value, as well as the high value determined for the triplet annihilation rate constant, k2= (2 ± 0.5)· 109M-1 s-1, might reflect an electron transfer mechanism. Copper bonellin had a shorter triplet lifetime (>20 ns), which offers a possible explanation for its lack of photodynamic action.  相似文献   

9.
Organic phosphorescence materials demonstrate potential optoelectronic applications due to their remarkably ultralong organic phosphorescence (UOP) lifetime and abundant optical characteristics prior to the fluorescence materials. For a better insight into the intrinsic relationship among regioisomeric molecules, crystalline interactions, and phosphorescence properties, three crystalline dicarbazol-9-yl pyrazine-based regioisomers with para-, meta-, and ortho-convergent substitutions (p-DCzP, m-DCzP, and o-DCzP) were designed and presented gradually increased UOP lifetimes prolonging from 63.14, 127.93 to 350.46 ms, respectively, due to the regioisomerism effect (RIE) which would be an effective strategy for better understanding of structure-property of UOP materials.  相似文献   

10.
Luminescent ZnII clusters [Zn4L43-OMe)2X2] (X=SCN ( 1 ), Cl ( 2 ), Br ( 3 )) and [Zn7L63-OMe)23-OH)4]Y2 (Y=I ( 4 ), ClO4 ( 5 )), HL=methyl-3-methoxysalicylate, exhibiting blue fluorescence at room temperature (λmax=416≈429 nm, Φem=0.09–0.36) have been synthesised and investigated in detail. In one case the external heavy-atom effect (EHE) arising the presence of iodide counter anions yielded phosphorescence with a long emission lifetime (λmax=520 nm, τ=95.3 ms) at 77 K. Single-crystal X-ray structural analysis and time-dependent density-functional theory (TD-DFT) calculations revealed that their emission origin was attributed to the fluorescence from the singlet ligand-centred (1LC) excited state, and the phosphorescence observed in 4 was caused by the EHE of counter anions having strong CH−I interactions.  相似文献   

11.
Pure organic materials with ultralong room‐temperature phosphorescence (RTP) are attractive alternatives to inorganic phosphors. However, they generally show inefficient intersystem crossing (ISC) owing to weak spin–orbit coupling (SOC). A design principle based on the realization of small energy gap between the lowest singlet and triplet states (ΔEST) and pure ππ* configuration of the lowest triplet state (T1) via structural isomerism was used to obtain efficient and ultralong RTP materials. The meta isomer of carbazole‐substituted methyl benzoate exhibits an ultralong lifetime of 795.0 ms with a quantum yield of 2.1 %. Study of the structure–property relationship shows that the varied steric and conjugation effects imposed by ester substituent at different positions are responsible for the small ΔEST and pure ππ* configuration of T1.  相似文献   

12.
The phosphorescence emission of perylene bisimide derivatives has been rarely reported. Two novel ruthenium(II) and iridium(III) complexes of an azabenz‐annulated perylene bisimide (ab‐PBI), [Ru(bpy)2(ab‐PBI)][PF6]2 1 and [Cp*Ir(ab‐PBI)Cl]PF6 2 are now presented that both show NIR phosphorescence between 750–1000 nm in solution at room temperature. For an NIR emitter, the ruthenium complex 1 displays an unusually high quantum yield (Φp) of 11 % with a lifetime (τp) of 4.2 μs, while iridium complex 2 exhibits Φp<1 % and τp=33 μs. 1 and 2 are the first PBI‐metal complexes in which the spin–orbit coupling is strong enough to facilitate not only the Sn→Tn intersystem crossing of the PBI dye, but also the radiative T1→S0 transition, that is, phosphorescence.  相似文献   

13.
The photophysics and polarization of the phosphorescence and delayed fluorescence of erythrosin in conditions compatible with the current biological applications of the dye (aqueous buffers at pH 7.4 at ambient temperatures) and in ethanol have been studied as a function of dye concentration (10 ?7-10?5M) and temperature (245–333K). The emission decay is strictly single exponential and the detailed kinetic analysis of all the rate processes connected with the emitting T1 state showed that (1) the lowering of the emission lifetime at the higher temperatures is due to a very efficient self-quenching process, (2) the back intersystem crossing rate Tx S1 is temperature dependent (δETS7 kcal mol?1) but the T1S0 is not (Ea0.1 kcal mol?1) and (3) both intersystem crossing processes are very sensitive to solvent polarity, which accounts for the solvent dependence of the phosphorescence yield and lifetime. The high value of the phosphorescence anisotropy (r0= 0.25 lt 0.006) is independent of the excitation and emission wavelengths, and its evolution in time accurately reflects the rotational restrictions in solid solutions. The relevance of these findings to studies with protein-dye conjugates is also outlined to facilitate the design and interpretation of phosphorescence depolarization experiments that probe the (μs-ms dynamics of biomolecules and supramolecular systems.  相似文献   

14.
The phosphorescence spectrum (T = 21 ms) of vanadium (V) surface complexes has been studied. It is found that the excitation energy is concentrated in the V5+O2? bond and that the photoreduction reactions pass through the triplet state of the surface complexes. A mechanism for the photoreduction processes is proposed.  相似文献   

15.
Photoinduced processes in bis(diethylaminobenzylidene)cyclohexanone (CH1) and its bis(aza-18-crown-6) derivative (CH2) in acetonitrile at ambient temperature and 77 K have been studied. The absorption, fluorescence, and phosphorescence spectra of CH1 and CH2 are similar. The probability of the formation of the triplet state is higher for CH2 molecules (λT-Tmax = 660 nm, lifetime τT ~ 20 μs). The lifetime of the CH1 molecule in the triplet state is estimated at τT ~ 2–3 μs. Photoisomers of CH1 and CH2 are formed along with the triplet state. According to DFT calculation results, the formation of trans–cis photoisomers of CH1 and CH2 is the most energetically favorable.  相似文献   

16.
A new procedure for measuring time-resolved emission spectra has been implemented. This technique has subnanosecond time resolution combined with the sensitivity and dynamic range needed to cope with extremely weak luminescence. Using this method the emissions of Cr(NH3)2 (NCS)4? and Cr(NCS)63- in aqueous solution at room temperature have each been analyzed into two components. The fast component has a broad spectrum and is assigned to prompt fluorescence with lifetime below 100 ps. The slow component is dominated by phosphorescence but may include some delayed fluorescence. The phosphorescence lifetime is 5.5 ± 0.5 ns in Cr(NH3)2 (NCS)4? and 1.65 ± 0.1 ns in Cr(NCS)63-. Order of magnitude estimates have been derived for other photophysical parameters.  相似文献   

17.
Peripherally metalated porphyrinoids are promising functional π-systems displaying characteristic optical, electronic, and catalytic properties. In this work, 5-(2-pyridyl)- and 5,10,15-tri(2-pyridyl)-BIII-subporphyrins were prepared and used to produce cyclometalated subporphyrins by reactions with [Cp*IrCl2]2, which proceeded through an efficient C−H activation to give the corresponding mono- and tri-IrIII complexes, respectively. While the mono-IrIII complex was obtained as a diastereomeric mixture, a C3-symmetric tri-IrIII complex with the three Cp*-units all at the concave side was predominantly obtained in a high yield of 90 %, which displays weak NIR phosphorescence even at room temperature in degassed CH2Cl2, differently from the mono-IrIII complexes.  相似文献   

18.
In this study, green phosphorescent Pt(II) complexes with N,N‐diphenyl‐6‐(1H‐pyrazol‐1‐yl)pyridin‐2‐amine (Ndpp) coordinated ligands, [Pt (Ndpp)Cl] 2a , [Pt (Ndpp)Pb, Pb = (prop‐1‐ynyl)benzene] 2b , and [Pt (Ndpp)CN] 2a? CN were theoretically investigated by means of density functional theory and time‐dependent density functional theory calculations to reveal their marked distinct phosphorescence quantum yields. These complexes exhibit evident absorption bands in the 200–450 nm region but emit strong green light with marked differences of phosphorescence quantum yields. Compared with the complex 2a , the complex 2b possesses large oscillator strengths of absorption spectra, strong spin‐orbit coupling, and transition electric dipole moment, as well as small singlet‐triplet splitting energies, which conduces to enhancing its radiative decay. To illustrate the nonradiative decay process, the transition state (TS) between the triplet metal‐centered (3MC) state and the excited state (T1) was optimized. The 3MC state is found to be the minimum energy crossing point (MECP) between the T1 state and the S0 state. Compared with the complex 2a , the complex 2b possesses a much larger energy barrier to the MECP state from the T1 state, so it is strongly emissive in the green region. Besides, the introduction of ? CN substitutions on 2a is useful for enhancing the energy barrier to the thermal deactivation pathway of 3MLCT → TS → MECP. These results demonstrate that the modification of metal–ligand conjugation is an effective way to develop high‐performance phosphorescent materials.  相似文献   

19.
The photolysis of SO2 at 3712 Å in the presence of the 1,2-dichloroethylenes has been investigated at 22deg;C. The data are consistent with the SO2(3B1) photosensitized isomerization of the 1,2-dichloroethylene isomer. A kinetic treatment of the initial quantum yield data was consistent with the formation of a polarized charge-transfer intermediate whenever SO2(3B1) molecules and one of the 1,2-dichloroethylene isomers collide which ultimately decays unimolecularly to the cis-isomer with a probability of 0.70 ± 0.26 and to the trans-isomer with a 0.37 ± 0.16 probability. Quenching rate constants for removal of SO2(3B1) molecules by cis- and trans-1,2-dichloroethylene have been estimated from quantum yield data and from laser excited phosphorescence lifetimes using an excitation wavelength of 3130 Å. Estimates of the quenching rate constant (units of 1./mole ± sec) are for the cis-isomer, (1.63 ± 0.71) × 1010, quantum yield data, and (2.44 ± 0.11) × 1010, lifetime data; and for the trans-isomer,(2.59 ± 0.09)×1010, lifetime data, and (2.35 ±0.89) × 1010, quantum yield data. An experimentally determined photostationary composition,[cis-C2Cl2H2]/[trans-C2Cl2H2] = 1.8 - 0.1, was in good agreement with a value of 2.00 - 1.15 which was predicted from rate constants derived in this study.  相似文献   

20.
T1 ← S0 absorption and T1 → S0 phosphorescence spectra of neat cystalline hexachloroacetone have been analyzed at 4.2°K. From the lifetime and energy the upper state is assigned as 3*. The spectra are sharp compared to other aliphatic ketones, with the 0-0 band at 26 248 ± 2 cm ?1. The phosphorescence shows two strong progressions; one involving the CO stretching mode at 1784 cm?1 (x), the other a long progression of at least 8 bands involving a mode at 143 cmt-1 (a). The 143 cm?1 progression forming mode can best be asigned to the CO out-of-plane wagging vibration. The absorption shows the same two strong progressions, reduced in frequency to 1270 cmt-1 and 123 cm?1, respectively, but with the progression in mode a broadened with increasing n. The broadening is interpreted as arising from inversion doublets; the close harmonicity up to n = 5 allowing the potential barrier to inversion to be estimated as > 700 cm?1. A feature of the spectra is the absence of low frequency torsional modes suggesting lack of pseudo Jahn-Teller distortion of the triplet state potential surface. For comparison, the phosphorescence of crystalline hexafluoroacetone was also studied at 4.2°K. The spectrum exhibits broad bandedness with a 00 band tentatively assigned at 26 870 ± 20 cm?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号