首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
N‐(3‐Azidopropyl)vinylsulfonamide was developed as a new bifunctional bioconjugation reagent suitable for the cross‐linking of biomolecules through copper(I)‐catalyzed azide–alkyne cycloaddition and thiol Michael addition reactions under biorthogonal conditions. The reagent is easily clicked to an acetylene‐containing DNA or protein and then reacts with cysteine‐containing peptides or proteins to form covalent cross‐links. Several examples of bioconjugations of ethynyl‐ or octadiynyl‐modified DNA with peptides, p53 protein, or alkyne‐modified human carbonic anhydrase with peptides are given.  相似文献   

2.
Inverse electron demand Diels–Alder reactions between s-tetrazines and strained dienophiles have numerous applications in fluorescent labeling of biomolecules. Herein, we investigate the effect of the dienophile on the fluorescence enhancement obtained upon reaction with a tetrazine-quenched fluorophore and study the possible mechanisms of fluorescence quenching by both the tetrazine and its reaction products. The dihydropyridazine obtained from reaction with a strained cyclooctene shows a residual fluorescence quenching effect, greater than that exerted by the pyridazine arising from reaction with the analogous alkyne. Linear and ultrabroadband two-dimensional electronic spectroscopy experiments reveal that resonance energy transfer is the mechanism responsible for the fluorescence quenching effect of tetrazines, whereas a mechanism involving more intimate electronic coupling, likely photoinduced electron transfer, is responsible for the quenching effect of the dihydropyridazine. These studies uncover parameters that can be tuned to maximize fluorogenic efficiency in bioconjugation reactions and reveal that strained alkynes are better reaction partners for achieving maximum contrast ratio.  相似文献   

3.
Substituted cyclopropenes have recently attracted attention as stable “mini‐tags” that are highly reactive dienophiles with the bioorthogonal tetrazine functional group. Despite this interest, the synthesis of stable cyclopropenes is not trivial and their reactivity patterns are poorly understood. Here, the synthesis and comparison of the reactivity of a series of 1‐methyl‐3‐substituted cyclopropenes with different functional handles is described. The rates at which the various substituted cyclopropenes undergo Diels–Alder cycloadditions with 1,2,4,5‐tetrazines were measured. Depending on the substituents, the rates of cycloadditions vary by over two orders of magnitude. The substituents also have a dramatic effect on aqueous stability. An outcome of these studies is the discovery of a novel 3‐amidomethyl substituted methylcyclopropene tag that reacts twice as fast as the fastest previously disclosed 1‐methyl‐3‐substituted cyclopropene while retaining excellent aqueous stability. Furthermore, this new cyclopropene is better suited for bioconjugation applications and this is demonstrated through using DNA templated tetrazine ligations. The effect of tetrazine structure on cyclopropene reaction rate was also studied. Surprisingly, 3‐amidomethyl substituted methylcyclopropene reacts faster than trans‐cyclooctenol with a sterically hindered and extremely stable tert‐butyl substituted tetrazine. Density functional theory calculations and the distortion/interaction analysis of activation energies provide insights into the origins of these reactivity differences and a guide to the development of future tetrazine coupling partners. The newly disclosed cyclopropenes have kinetic and stability advantages compared to previously reported dienophiles and will be highly useful for applications in organic synthesis, bioorthogonal reactions, and materials science.  相似文献   

4.
Herein, we give the very first example for the development of a fluorogenic molecular probe that combines the two‐point binding specificity of biarsenical‐based dyes with the robustness of bioorthogonal click‐chemistry. This proof‐of‐principle study reports on the synthesis and fluorogenic characterization of a new, double‐quenched, bis‐azide fluorogenic probe suitable for bioorthogonal two‐point tagging of small peptide tags by double strain‐promoted azide–alkyne cycloaddition. The presented probe exhibits remarkable increase in fluorescence intensity when reacted with bis‐cyclooctynylated peptide sequences, which could also serve as possible self‐labeling small peptide tag motifs.  相似文献   

5.
5‐Vinyl‐2′‐deoxyuridine (VdU) is the first reported metabolic probe for cellular DNA synthesis that can be visualized by using an inverse electron demand Diels–Alder reaction with a fluorescent tetrazine. VdU is incorporated by endogenous enzymes into the genomes of replicating cells, where it exhibits reduced genotoxicity compared to 5‐ethynyl‐2′‐deoxyuridine (EdU). The VdU–tetrazine ligation reaction is rapid (k≈0.02 M ?1 s?1) and chemically orthogonal to the alkyne–azide “click” reaction of EdU‐modified DNA. Alkene–tetrazine ligation reactions provide the first alternative to azide–alkyne click reactions for the bioorthogonal chemical labeling of nucleic acids in cells and facilitate time‐resolved, multicolor labeling of DNA synthesis.  相似文献   

6.
We describe the efficient synthesis and one‐step derivatization of novel, nonfluorescent azo dyes based on the Black Hole Quencher‐3 (BHQ‐3) scaffold. These dyes were equipped with various reactive and/or bioconjugatable groups (azido, α‐iodoacetyl, ketone, terminal alkyne, vicinal diol). The azido derivative was found to be highly reactive in the context of copper‐catalyzed azide–alkyne cycloaddition (CuAAC) reactions and allowed easy synthetic access to the first water‐soluble (sulfonated derivative) and aldehyde‐modified BHQ‐3 dyes, the direct preparation of which failed by means of conventional azo‐coupling reactions. The aldehyde‐ and α‐iodoacetyl‐containing fluorescence quenchers were readily conjugated to aminooxy‐ and cysteine‐containing peptides by the formation of a stable oxime or thioether linkage, respectively. Further fluorescent labeling of the resultant peptide conjugates with red‐ or far‐red‐emitting rhodamine or cyanine dyes through sequential and/or one‐pot bioconjugations, led to novel Förster resonance energy transfer (FRET) based probes suitable for the in vivo detection and imaging of urokinase plasminogen activator, a key protease in cancer invasion and metastasis.  相似文献   

7.
The copper‐catalyzed azide–alkyne cycloaddition (CuAAC) reaction has proven to be a pivotal advance in chemical ligation strategies with applications ranging from polymer fabrication to bioconjugation. However, application in vivo has been limited by the inherent toxicity of the copper catalyst. Herein, we report the application of heterogeneous copper catalysts in azide–alkyne cycloaddition processes in biological systems ranging from cells to zebrafish, with reactions spanning from fluorophore activation to the first reported in situ generation of a triazole‐containing anticancer agent from two benign components, opening up many new avenues of exploration for CuAAC chemistry.  相似文献   

8.
This study presents the development of microreactor protocols for the successful continuous flow end group modification of atom transfer radical polymerization precursor polymers into azide end‐capped materials and the subsequent copper‐catalyzed azide alkyne click reactions with alkyne polymers, in flow. By using a microreactor, the reaction speed of the azidation of poly(butyl acrylate), poly(methyl acrylate), and polystyrene can be accelerated from hours to seconds and full end group conversion is obtained. Subsequently, copper‐catalyzed click reactions are executed in a flow reactor at 80 °C. Good coupling efficiencies are observed and various block copolymer combinations are prepared. Furthermore, the flow reaction can be carried out in only 40 min, while a batch procedure takes several hours to reach completion. The results indicate that the use of a continuous flow reactor for end group modifications as well as click reactions has clear benefits towards the development and improvement of well‐defined polymer materials. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1263–1274  相似文献   

9.
[Structure: see text]. Copper-catalyzed azide alkyne cycloadditions of the linear substrates 1 were used to form the cyclic derivatives 2. Computational, NMR, and CD analyses of these compounds indicate that their most favorable conformational states include type I and type II beta-turn conformations. Selectivity for the dimeric products 6 in these cyclization reactions is discussed.  相似文献   

10.
Various bioorthogonal chemistries have been used for fluorescent imaging owing to the advantageous reactions they employ. Recent advances in bioorthogonal chemistry have revolutionized labeling strategies for fluorescence imaging, with inverse electron demand Diels–Alder (iEDDA) reactions in particular attracting recent attention owing to their fast kinetics and excellent specificity. One of the most interesting features of the iEDDA labeling strategy is that tetrazine-functionalized dyes are known to act as fluorogenic probes. In this review, we will focus on the synthesis, molecular-design strategies, and bioimaging applications of tetrazine-functionalized fluorogenic probes. Traditional Pinner reaction and “Pinner-like” reactions for tetrazine synthesis are discussed here, as well as metal-catalyzed C–C bond formations with convenient tetrazine intermediates and the fabrication of tetrazine-conjugated fluorophores. In addition, four different quenching mechanisms for tetrazine-modified fluorophores are presented.  相似文献   

11.
Two in one--We show here that the highly strained trans,trans-diolefin (E,E)-1,5-cyclooctadiene can perform efficiently two different click reactions at fast reaction rates. It is capable of first undergoing [3+2] cycloadditions with 1,3-dipoles at a reaction rate comparable to that of strained cyclooctynes. The resulting cycloadduct can then perform a much faster inverse-electron-demand Diels-Alder reaction with tetrazines, effectively linking an azide to a tetrazine. Thus, (E,E)-1,5-cyclooctadiene could have many applications in chemical biology and polymer chemistry.  相似文献   

12.
An azanorbornadiene bromovinyl sulfone reagent for cysteine-selective bioconjugation has been developed. Subsequent reaction with dipyridyl tetrazine leads to bond cleavage and formation of a pyrrole-linked conjugate. The latter involves ligation of the tetrazine to the azanorbornadiene-tagged protein through inverse electron demand Diels–Alder cycloaddition with subsequent double retro-Diels–Alder reactions to form a stable pyrrole linkage. The sequence of site-selective bioconjugation followed by bioorthogonal bond cleavage was efficiently employed for the labelling of three different proteins. This method benefits from easy preparation of these reagents, selectivity for cysteine, and stability after reaction with a commercial tetrazine, which has potential for the routine preparation of protein conjugates for chemical biology studies.  相似文献   

13.
In spite of the wide application potential of 1,2,4,5‐tetrazines, particularly in live‐cell and in vivo imaging, a major limitation has been the lack of practical synthetic methods. Here we report the in situ synthesis of (E)‐3‐substituted 6‐alkenyl‐1,2,4,5‐tetrazine derivatives through an elimination–Heck cascade reaction. By using this strategy, we provide 24 examples of π‐conjugated tetrazine derivatives that can be conveniently prepared from tetrazine building blocks and related halides. These include tetrazine analogs of biological small molecules, highly conjugated buta‐1,3‐diene‐substituted tetrazines, and a diverse array of fluorescent probes suitable for live‐cell imaging. These highly conjugated probes show very strong fluorescence turn‐on (up to 400‐fold) when reacted with dienophiles such as cyclopropenes and trans‐cyclooctenes, and we demonstrate their application for live‐cell imaging. This work provides an efficient and practical synthetic methodology for tetrazine derivatives and will facilitate the application of conjugated tetrazines, particularly as fluorogenic probes for live‐cell imaging.  相似文献   

14.
Bifunctional chelators as parts of modular metal-based radiopharmaceuticals are responsible for stable complexation of the radiometal ion and for covalent linkage between the complex and the targeting vector. To avoid loss of complex stability, the bioconjugation strategy should not interfere with the radiometal chelation by occupying coordinating groups. The C9 position of the very stable CuII chelator 3,7-diazabicyclo[3.3.1]nonane (bispidine) is virtually predestined to introduce functional groups for facile bioconjugation as this functionalisation does not disturb the metal binding centre. We describe the preparation and characterisation of a set of novel bispidine derivatives equipped with suitable functional groups for diverse bioconjugation reactions, including common amine coupling strategies (bispidine-isothiocyanate) and the Cu-free strain-promoted alkyne–azide cycloaddition. We demonstrate their functionality and versatility in an exemplary way by conjugation to an antibody-based biomolecule and validate the obtained conjugate in vitro and in vivo.  相似文献   

15.
An azanorbornadiene bromovinyl sulfone reagent for cysteine‐selective bioconjugation has been developed. Subsequent reaction with dipyridyl tetrazine leads to bond cleavage and formation of a pyrrole‐linked conjugate. The latter involves ligation of the tetrazine to the azanorbornadiene‐tagged protein through inverse electron demand Diels–Alder cycloaddition with subsequent double retro‐Diels–Alder reactions to form a stable pyrrole linkage. The sequence of site‐selective bioconjugation followed by bioorthogonal bond cleavage was efficiently employed for the labelling of three different proteins. This method benefits from easy preparation of these reagents, selectivity for cysteine, and stability after reaction with a commercial tetrazine, which has potential for the routine preparation of protein conjugates for chemical biology studies.  相似文献   

16.
The inverse electron demand Diels–Alder pyridazine elimination reaction between tetrazines and allylic substituted trans-cyclooctenes (TCOs) is a key player in bioorthogonal bond cleavage reactions. Determining the rate of elimination of alkylamine substrates has so far proven difficult. Here, we report a fluorogenic tool consisting of a TCO-linked EDANS fluorophore and a DABCYL quencher for accurate determination of both the click and release rate constants for any tetrazine at physiologically relevant concentrations.  相似文献   

17.
The design, synthesis, and photophysical properties of new BODIPY-based fluorogenic ‘click on’ dyes are reported. CuAAC reaction of non-fluorescent BODIPY azide with a series of non-fluorescent alkyne molecules resulted in fluorescent triazoles which displayed up to 532-fold enhancement of fluorescence in the red region. Imaging studies confirmed the general trend of cell permeability and a cholesterol linked derivative exhibited selective localization into intracellular membranes.  相似文献   

18.
We have prepared NHC-CuI complexes with a rotaxane structure and used them as sterically sensitive catalysts for one-pot sequential copper-catalyzed azide/alkyne cycloadditions in solutions containing all of the coupling partners premixed in unprotected form. Most notably, a photolabile and sterically encumbered complex first catalyzed the coupling of a less bulky azide/alkyne pair; after removing the protective macrocyclic component from the rotaxane structure, through irradiation with light, the exposed dumbbell-shaped NHC-CuI complex catalyzed the second click reaction of a bulkier azide/alkyne pair. Using this approach, we obtained predominantly, from a single sealed pot, a bis-triazole product (84 %) from a mixture of two sterically distinct azides and a diyne.  相似文献   

19.
Cyanine dyes are known for their fluorescence in the near-IR (NIR) region, which is desirable for biological applications. We report the synthesis of a series of aminocyanine dyes containing terminal functional groups such as acid, azide, and cyclooctyne groups for further functionalization through, for example, click chemistry. These aminocyanine dyes can be attached to polyfunctional dendrons by copper-catalyzed azide alkyne cycloaddition (CuAAC), strain-promoted azide alkyne cycloaddition (SPAAC), peptide coupling, or direct S(NR)1 reactions. The resulting dendron-dye conjugates were obtained in high yields and displayed high chemical stability and photostability. The optical properties of the new compounds were studied by UV/Vis and fluorescence spectroscopy. All compounds show large Stokes shifts and strong fluorescence in the NIR region with high quantum yields, which are optimal properties for in vivo optical imaging.  相似文献   

20.
Owing to the intrinsic limitations of the conventional bioconjugation methods involving native nucleophilic functions of proteins, we sought to develop alternative approaches to introduce metallocarbonyl infrared labels onto proteins on the basis of the [3 + 2] dipolar azide‐alkyne cycloaddition (AAC). To this end, two cyclopentadienyl iron dicarbonyl (Fp) complexes carrying a terminal or a strained alkyne handle were synthesized. Their reactivity was examined towards a model protein and poly (amidoamine) (PAMAM) dendrimer, both carrying azido groups. While the copper (I)‐catalysed azide‐alkyne cycloaddition (CuAAC) proceeded smoothly with the terminal alkyne metallocarbonyl derivative, labelling by strain‐promoted azide‐alkyne cycloaddition (SPAAC) was less successful in terms of final coupling ratios. Infrared spectral characterization of the bioconjugates showed the presence of two bands in the 2000 cm?1 region, owing to the stretching vibration modes of the carbonyl ligands of the Fp entities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号