首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
有机硅氧烷预聚体的合成及其在化学固沙中的应用   总被引:1,自引:0,他引:1  
赵水侠  王来来 《应用化学》2011,28(7):753-758
以甲基三乙氧基硅烷为反应物,在盐酸催化下水解缩合,合成无色透明粘稠的液体有机硅氧烷预聚体,IR和1H NMR表征证实其为目的产物;当有机硅氧烷预聚体与工业乙醇的体积比为1∶1,以质量分数0.60%的NaOH-CH3OH溶液为固化剂,加入该溶液0.05 mL,在30 ℃,预聚体交联固化时间为9 min;在50 ℃,预聚体交联固化时间为4 min;首次将有机硅氧烷预聚体,或它与聚乙烯醇(PVA20-88)的混合物用作化学固沙剂,形成的固结层具有较好的耐水性和较高的抗剪强度;当PVA20-88与有机硅氧烷预聚体的质量比为1∶4时,粘聚力达到483.7 kPa,内摩擦角为68.39°,在160 h的紫外光照射下,具有很好的耐老化性。  相似文献   

2.
合成了具有苯侧基的二胺单体1,4-双(4'-氨基苯氧基)-2-(苯基)苯(p-TPEQ), 并与3,3',4,4'-苯酮四羧酸二酐(BTDA)进行缩聚反应, 分别以4-苯乙炔苯酐(PEPA)和4-苯乙炔-1,8-萘二甲酸酐(PENA)作为封端剂, 合成了两个系列的苯乙炔封端的酰亚胺预聚体. DSC测试结果表明, 此类预聚体具有比PETI-5更宽的加工窗口; 利用所合成的预聚体制成了具有较高热分解温度热固性交联PI薄膜. 结果表明, PI预聚体加工性能良好, 其交联后具有优异的力学和热学性能; 同时PEPA封端的预聚体树脂具有比PENA封端的树脂更为优异的综合性能.  相似文献   

3.
本文以具有硅苯撑结构的环状有机硅氧烷--十二甲基环三对硅笨撑硅氧烷为单体,用开环聚合方法合成了聚四甲基对硅苯撑硅氧烷.选用硅醇钾催化,环单体有较高的开环聚合活性.通过IR、1H NMR和13C NMR等证明了聚合物的化学结构.聚合物在空气中的热失重温度较聚二甲基硅氧烷约高110℃,因此热稳定性更好.  相似文献   

4.
主链含有机硅结构单元的光敏聚酰亚胺的研究   总被引:7,自引:0,他引:7  
提出了一类主链上含有机硅结构单元的光敏聚酰亚胺(PSPI)。其合成过程是首先制备聚酰胺酸预聚体,接着在二环己基碳二酰亚胺存在下,使之转变为聚硅氧酰亚胺,然后引入光敏基团。通过IR、DSC、元素分析、UV、介电分析方法对聚酰亚胺的结构、感光特性、热性能、电性能、粘附性、吸湿性能等进行了表征。对结构与性能之间的关系进行了初步探讨。  相似文献   

5.
合成了含有苯乙炔基的二胺单体 3,5-二氨基-4'-苯乙炔苯甲酮(DPEB), 并与3,3',4,4'-联苯四酸二酐(s-BPDA)和1,4-双(4'-氨基苯氧基)-2-(苯基)苯(p-TPEQ)进行了缩聚反应, 以4-苯乙炔苯酐作为封端剂, 合成了交联侧基苯乙炔封端酰亚胺预聚体(n=4). DSC测试结果表明, 引入交联侧基后预聚体依然保持着较宽的加工窗口. 利用所合成的预聚体在370℃热压1 h制备了热固性薄膜. DMA测试结果表明, 引入交联侧基的预聚体树脂具有更高的玻璃化转变温度, 并且其储存模量在玻璃化转变后有很好的保持.  相似文献   

6.
二乙基硅氧烷双苯并环丁烯的合成及其聚合物性能   总被引:1,自引:0,他引:1  
利用硅氢加成反应,以4-乙烯基苯并环丁烯(4-VBCB)和1,1,3,3-四甲基-1,3-二氢二硅氧烷(TMHS)为原料,一步法合成了二乙基硅氧烷双苯并环丁烯(DES-bis-BCB),并对以其为单体在热引发条件下生成的预聚体进行了结构表征。 利用原子力显微镜和热重分析对预聚体的成膜性能和热性能进行了分析。 结果显示,薄膜的均方根(RMS)糙度为0.53 nm,初始分解温度为390 ℃,表明二乙基硅氧烷双苯并环丁烯聚合物具有良好的成膜性能和优异的热稳定性能。  相似文献   

7.
以氨丙基硅氧烷偶联剂和端羟基聚二甲基硅氧烷(PDMS)为原料,合成了端氨丙基聚二甲基硅氧烷低聚物(SN2),并将其作为扩链剂,制备了有机硅-聚氨酯(Si-PU)嵌段共聚物.考察了聚氨酯预聚体的加料比(rNCO/OH)、SN2与聚氨酯预聚体的加料比(rNH2/NCO)对Si-PU嵌段共聚物溶液流变行为及其膜性能的影响.研究发现,该Si-PU共聚物的异丙醇溶液呈现较低的表观黏度及牛顿特性;成膜时,有机硅链段向表面迁移;膜表面对水的接触角达110°以上,且随着有机硅链段含量的增高而增大;共聚物膜的24 h吸水率较低(<1.5 wt%);但当有机硅链段含量过高时,吸水率反而增高.  相似文献   

8.
从p-氯烯丙苯出发,通过相继地与三甲氧基硅烷进行硅氢加成、二苯膦钾膦化、气相法二氧化硅固载化,再与氯亚铂酸钾或三氯化铑反应,合成了聚γ-(p-二苯膦苯基)丙基硅氧烷铂、铑络合物。两者对烯烃与三乙氧基硅烷的硅氢加成反应具有良好的催化活性。  相似文献   

9.
我们提出了一条合成含有苯并-15-冠-5取代基的某些有机硅冠醚化合物的简易路线。通过Wittig反应合成的4'-乙烯基苯并-15-冠-5,经过双键上的硅氢加成反应,得到几种新型含有冠醚基团的有机硅烷或氯硅烷。后者可以进一步烷氧基化或者水解成冠醚取代的聚有机硅氧烷。此外,还测定了它们对碱金属离子的络合容量和作为相转移催化剂的能力。  相似文献   

10.
硅氮烷的合成与应用研究进展   总被引:5,自引:0,他引:5  
张金东  滕雅娣  李旭日  王思林 《有机化学》2007,27(11):1358-1365
硅氮烷根据原料以及合成方法的不同可分为链硅氮烷、环硅氮烷、聚硅氮烷等. 有机硅氮化合物由于其含有的硅氮键、氮氢键的独特性质, 在陶瓷前驱体制备、耐热材料的制备、辉光放电反应、高效液相色谱等方面有了越来越重要的应用.介绍了硅氮烷的一些最新合成与应用研究进展.  相似文献   

11.
The syntheses and characterization of linear silarylene‐siloxane‐diacetylene polymers 3a–c and their thermal conversion to crosslinked elastomeric materials 4a–c are discussed. Inclusion of the diacetylene unit required synthesis of an appropriate monomeric species. 1,4‐Bis(dimethylaminodimethylsilyl)butadiyne [(CH3)2N? Si(CH3)2? C?C? C?C? (CH3)2Si? N(CH3)2] 2 was prepared from 1,4‐dilithio‐1,3‐butadiyne and 2 equiv of dimethylaminodimethylchlorosilane. The linear polymers were prepared via polycondensation of 2 with a series of disilanol prepolymers. The low molecular weight silarylene‐siloxane prepolymers 1a–c (terminated by hydroxyl groups) were synthesized via solution condensation of an excess amount of 1,4‐bis(hydroxydimethylsilyl)benzene with bis(dimethylamino)dimethylsilane. The linear polymers were characterized by 1H and 13C NMR, Fourier transform infrared spectroscopy, gel permeation chromatography, thermogravimetric analysis (TGA), and DSC. The elastomers exhibited long‐term oxidative stability up to 330 °C in air as determined by TGA. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 88–94, 2002  相似文献   

12.
通过八甲基环四硅氧烷、六苯基环三硅氧烷和1,3 双(γ 氨基丙基)四甲基二硅氧烷在硅醇钾催化下的开环共聚合,合成了α,ω 双(γ 氨基丙基)聚二甲基二苯基硅氧烷预聚体,并用UV、IR、1H NMR、GPC对其化学结构和一些性质进行了表征和测定.  相似文献   

13.
The synthesis and characterization of some novel cationic siloxanes copolymers containing quaternary ammonium salt (QAS) groups in the backbone is reported in this article. One cationic oligomer having QAS in the backbone and reactive groups like 2,3‐epoxypropyl and 2‐hydroxy‐3‐chloropropyl (RCO) as well as 1,3‐bis(3‐aminopropyl)tetramethyldisiloxane or α,ω‐bis(3‐aminopropyl)oligodimethylsiloxane (AP) were used as precursors for this goal. Elemental analysis, IR and 1H NMR spectroscopy, thermogravimetric analysis, and X‐ray photoelectron spectroscopy were used to characterize the obtained copolymers. The thermal stability of the cationic siloxane copolymer increased when the siloxane oligomer having a high number of siloxane units in the chain (AP) was used as a precursor. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3570–3578, 2002  相似文献   

14.
Eight poly(imide‐siloxane)s co‐polymers have been prepared by one pot solution imidization method. The polymers are synthesized by the reaction of bisphenol‐A‐dianhydride (BPADA) with fluorinated diamine 4,4′‐bis(3″‐trifluoromethyl‐p‐aminobiphenyl ether) biphenyl, and aminopropyl‐terminated polydimethylsiloxane (APPS). The polymers are synthesized by varying the siloxane loading to 5, 10, 15, 20, 25, 30, 35, and 40 wt%, respectively. Thermal, mechanical, rheological, and dielectric properties of these polymers have been evaluated with respect to siloxane loading. The polymers showed glass transition temperature of 107–203°C and tensile strength at break of 24–75 MPa depending on siloxane loading. The elongation break of the polymers ranges from 24 to 144% depending on siloxane loading. The amounts of char residue in the polymers have been correlated with incorporated siloxane in the polymer by NMR techniques. The polymers showed very low water absorption and dielectric constant as low as 2.43 when the siloxane loading is 40 wt%. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
For the purpose of studying the mechanism of thermal degradation of poly[(tetramethyl-p-silphenylene) Siloxane] (poly TMPS) a series of polymers with silphenylene and siloxane bonds in the main chain were prepared and subjected to thermogravimetry (TG) and pyrolysis study. Analyses of products from poly TMPS degradation (in vacuum at a constant temperature) by gas chromatography (GC), infrared (IR), nuclear magnetic resonance (NMR) spectroscopy, and gas chromatography-mass spectrometry (GC–MS) revealed that degradation occurs at the silphenylene bonds. The TG curves obtained in He for heating rates of 1,2,2.5,7.5, and 10°C/min were analyzed by the Ozawa method; activation energies of 39 ± 1 and 45 ± 2 kcal/mol were obtained respectively for the initial cleavage of the methyl side group and the later-stage scission of the main-chain silphenylene bond which leads to a major weight loss. The results agree with those obtained for other structurally similar polymers.  相似文献   

16.
以N,N′-二(2-羟乙基)对苯二甲酰胺与己二酸及丁二醇缩聚,合成了同时带有端羧基与端羟基的聚酯酰胺预聚体,研究了不同扩链剂的扩链反应,获得了特性黏度达1.05 dL/g的聚酯酰胺.对预聚体及扩链后聚合物进行了红外与核磁表征,研究了聚合物的结构,并对聚合物进行了DSC与TG分析.  相似文献   

17.
Two bis(dimethylamimo)silanes with benzocyclobutene (BCB) groups, bis(dimethylamino)methyl(4′‐benzocyclobutenyl)silane ( 2 ) and bis(dimethylamino)methyl [2′‐(4′‐benzocyclobutenyl)vinyl]silane ( 4 ), were synthesized from different synthetic routes, which were then employed to prepare two novel silphenylene‐siloxane copolymers (SiBu and SiViBu) bearing latent reactive BCB groups by polycondensation procedure with 1,4‐bis(hydroxydimethylsilyl)benzene. At elevated temperatures these copolymers were readily converted to highly crosslinked films and molding disks with network structures by polymer chain crosslinking, which followed the first‐order kinetic reaction model. The final resins of SiBu and SiViBu demonstrated excellent thermal stability with high glass transition temperatures (218 and 256 °C) and high temperatures at 5% weight loss (553 and 526 °C in N2, 530 and 508 °C in air). After aging at 300 °C in air for 100 h, the cured resins showed weight loss lower than 4%. The films of cured SiBu and SiViBu also exhibited relatively low dielectric constants of 2.66 and 2.64, low dissipation factors of 2.23 and 2.12 × 10?3, low water absorptions (≤0.28%), and high transparence in the visible region with cutoff wavelengths of 321 and 314 nm. Moreover, the aged films exhibited good dielectric properties and low water absorptions. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7868–7881, 2008  相似文献   

18.
A series of silicone resins containing silphenylene units were synthesized by a hydrolysis-polycondensation method, with methyltriethoxysilane, dimethyldiethoxysilane and 1,4-bis(ethoxydimethylsilyl)benzene. Their thermal degradation behaviours were studied by thermogravimetric analysis (TGA), differential thermogravimetry (DTG) and Fourier-transform infrared (FTIR) spectroscopy, and the effect of silphenylene units on the thermal stability of silicone resins was also investigated. Results showed that the thermal stability of silicone resins was improved by the introduction of silphenylene units into the backbone. Under nitrogen atmosphere, the temperature for maximum degradation rate of silicone resins with silphenylene units was lower compared to the pure methylsilicone resin. With the increase of silphenylene units, the amount of degradation residues increased under nitrogen atmosphere while it decreased under air atmosphere. Additionally, the short-term and long-term stability of silicone resins were also improved by the introduction of silphenylene units.  相似文献   

19.
New strategies for the synthesis of perfectly alternating segmented polyimide-polydimethyl siloxane copolymers were developed by utilizing a transimidization method. Imide oligomers endcapped with 2-aminopyrimidine were reacted with aminopropyl terminated (dimethyl siloxane) oligomers to afford perfectly alternating segmented imide siloxane copolymers. The polymerization was conducted in solvents such as chlorobenzene and chlorofrom. High molecular weight, fully imidized perfectly alternating segmented imide siloxane copolymers were obtained within 2 h at temperatures of 60-110°C. The mechanism of the reaction was further elucidated via model compounds and NMR characterization. The block copolymers exhibited two Tgs due to the microphase separation of the polyimide and polysiloxane phases. The Tg of the polyimide phase was a function of the length of the polyimide block. However, partial phase mixing was also evident from the DSC results on the imide siloxane copolymers prepared with low molecular weight polyimide segments. Thermooxidative stability and tensile properties of the perfectly alternating segmented imide siloxane copolymers were found to be principally dependent on the amount of poly (dimethyl siloxane) incorporated in the copolymer and did not correlate with the poly (dimethyl siloxane) or polyimide block lengths. The stress-strain behavior of both solvent cast films or molded films is also reported. © 1994 John Wiley & Sons, Inc.  相似文献   

20.
High‐molecular‐weight polybenzoxazine prepolymers containing polydimethylsiloane unit in the main‐chain have been synthesized from α,ω‐bis(aminopropyl)polydimethylsiloxane (PDMS) (molecular weight = 248, 850, and 1622) and bisphenol‐A with formaldehyde. Moreover, another type of prepolymers was prepared using methylenedianiline (MDA) as codiamine with PDMS. The weight average molecular weight of the obtained prepolymers was estimated from size exclusion chromatography to be in the range of 8000–11,000. The chemical structures of the prepolymers were investigated by 1H NMR and IR analyses. The prepolymers gave transparent free standing films by casting their dioxane solution. The prepolymer films after thermally cured up to 240 °C gave brown colored transparent and flexible polybenzoxazine films. Tensile test of the films revealed that the elongation at break increased with increasing the molecular weight of PDMS unit. Dynamic mechanical analysis of the thermosets showed that the Tgs were as high as 238–270 °C. The thermosets also revealed high thermal stability as evidenced by the 5% weight loss temperatures in the range of 324–384 °C from thermogravimetic analysis. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号