首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
《Tetrahedron letters》1988,29(32):3945-3948
Primary and secondary deuterium isotope effects on 13C NMR chemical shifts for trigonal carbons are reported for twelve allylic alcohols. The secondary DIECCS is used for an accurate measurement of the deuterium labeling of variously substituted allylic alcohols.  相似文献   

2.
The study of 28 porous carbons shows that the specific capacitance in the electrolyte (C(2)H(5))(4)NBF(4)/acetonitrile is relatively constant between 0.7 and 15 nm (0.094 ± 0.011 F m(-2)). The increase in pores below 1 nm and the lower values between 1 and 2 nm reported earlier are not observed in the present work.  相似文献   

3.
The dependency of adsorption energy (E) and affinity coefficient (beta) of Dubinin equations (Dubinin-Radushkevich (DR) or Dubinin-Astakhov (DA)) on surface chemistry and porosity of activated carbons was investigated by analyzing adsorption of nitrogen, benzene, trichloroethylene (TCE), and water vapor by several surface-modified activated carbons and carbon fibers. For all studied nonpolar adsorbates, carbons with smaller average micropores showed higher adsorption energies independent of their surface chemistry. For water vapor, carbons with higher surface polarities showed higher adsorption energies due to specific adsorbate-adsorbent interactions. Adsorption energies increased with decreasing average micropore widths. betaN2,DR for different carbons were observed to vary in the 0.292-0.539 range. Carbons with higher degrees of mesoporosity had higher betaN2,DR values, while no dependency was observed between betaN2,DR and surface chemistry. A comparison of DR and DA cases indicates that: (1) the average value of betaN2,DA is considerably above the classical value of this parameter; and (2) the range of betaN2,DA values were smaller compared to betaN2,DR, despite a wide range of mesoporosity of carbons examined. Obtained beta(TCE,DR) values varied in the 0.952-1.243 range, with an average value of 1.085+/-0.083, independent of surface chemistry or porosity of activated carbons. A similar result was observed for beta(TCE,DA). betaH2O,DR values of different granular and fibrous activated carbons changed in the range of 0.081-0.271. They depended more on the carbon surface chemistry and less on the porosity. A similar result was obtained when DA equation was considered.  相似文献   

4.
A model is presented that employs a stochastic approach to the simulation of polyolefin chain growth and isomerization. The model is applied to propylene polymerization catalyzed by Pd-based diimine catalysts. The stochastic approach links the microscopic (quantum chemical) approach with modeling of the macroscopic systems. The DFT calculated energies of the elementary reactions and their barriers have been used as input parameters for the simulations. The influence of the catalyst's steric bulk, as well as polymerization temperature and olefin pressure on the polymer branching and its microstructure, is discussed. The results are in good agreement with available experimental data. In the propylene polymerization catalyzed by Pd(II) complexes with methyl backbone- and -Ph-(i)Pr(2) imine substituents a number of branches of 238 branches/1000 C have been obtained. An increase in polymerization temperature leads to a decrease in the number of branches. Change in olefin pressure does not affect the global number of branches, while it strongly affects the polymer microstructure, leading to hyperbranched structures at low pressures. Further, the simulations confirm the experimental interpretation of the mechanistic details for this process: (1) both 1,2- and 2,1-insertion happen with the ratio of ca. 7:3; (2) there are no insertions at the secondary carbons; and (3) most of the 2,1-insertions are followed by a chain straightening isomerization. Thus, for this catalyst the total number of branches is controlled exclusively by the 1,2-/2,1-insertion ratio. For the catalysts with different substituents the branching can be controlled by a 1,2-/2,1-insertion ratio as well as the fraction of the insertions at the secondary carbons. The results of the present studies demonstrate that a stochastic approach can be successfully used to model the polyolefin microstructures and their catalyst, temperature, and pressure dependence. Further, it can also facilitate interpretation of the experimental results, and can be used to draw general conclusions about the influence of the specific elementary reaction barriers on the polymer structures; this can be helpful for a rational design of the catalysts producing a desired microstructure.  相似文献   

5.
The present study aimed to explore the possibility of increasing the purification efficacy of ozone in the removal of high-toxicity contaminants by using carbons of basic character and to analyze the mechanism involved in this process. These carbons were prepared by treating a commercial activated carbon (Witco, W) with ammonia (W-A), ammonium carbonate (W-C), or urea (W-U), under high pressure and temperature. The ammonia and carbonate treatments slightly increased the mesoporosity and, to a greater degree, the macroporosity of carbon W, whereas the urea treatment produced an increase in the porosity across the whole range of pore sizes. In addition, treatment of the activated carbon with these nitrogenating agents produced a marked change in the chemical nature of its surface. Thus, according to the pH of the point of zero charge (pHPZC) values obtained for each sample, carbon W was neutral (pHPZC = 7.12), but the treated carbons were basic, especially carbon W-U (pHPZC = 8.85). This basicity results from an increased concentration of basic oxygenated and nitrogenated surface functional groups, as confirmed by the results of elemental and XPS analyses. An increase in the degradation of 1,3,6-naphthalenetrisulfonic acid was observed when the activated carbon samples were added to the system. This degradation was especially enhanced in the presence of carbon W-U. The increased NTS degradation rate in the presence of the activated carbon is due to an increased concentration of highly reactive radicals in the system. When the catalytic activity of the activated carbon samples was related to their chemical and textural characteristics, it was found that: (i) The catalytic activity increased with an increase in the surface basicity. Interestingly, in the sample with greatest catalytic activity in NTS ozonation, carbon W-U, most of the nitrogenated surface groups introduced were pyrrol groups. These groups increase the electronic density of the basal plane of the activated carbon, thereby enhancing the reduction of ozone on the surface and the generation of highly reactive radicals in the system. (ii) The greater catalytic activity of carbon W-U may also be partly related to its greater surface area and higher volume of mesopores and macropores; these large pores facilitate access of the ozone to the surface active centers of the carbon, increasing its catalytic activity. The presence of the activated carbon samples during NTS ozonation also favored the removal of total organic carbon present in the solution, due to (a) transformation of organic matter into CO2 through the generation of highly reactive species catalyzed by the presence of the activated carbons (catalytic contribution) and (b) adsorption of NTS oxidation byproducts on the activated carbon (adsorptive contribution). The results obtained show that activated carbons treated with nitrogenating agents are very promising catalysts for application in the ozonation of aromatic compounds.  相似文献   

6.
研究了引入的交联剂二乙烯基苯对作为锂离子二次电池负极材料的聚合物裂解碳性能的影响.结果表明交联剂引入到聚丙烯腈中后,在热处理过程中有利于该聚合物的碳化,导致层间距d002减少及石墨微晶尺寸增加;交联剂的固定作用使碳材料的有序性得到了提高;同时微孔数目也得到了增加.这些因素的影响导致了聚合物裂解碳的可逆储锂容量随交联剂的量的增加而提高.对于别的加聚物如聚4乙烯吡啶而言,同样也使所得到的聚合物裂解碳的可逆储锂容量得到了提高.最大可逆容量可达600mAh·g-1.  相似文献   

7.
Carbon-13, carbon-13 coupling constants and carbon-13 chemical shifts have been measured in a series of phenyl substituted ethylenes and aromatics all doubly labelled with 13C at the olefinic positions (α,β-) or at neighbouring aromatic positions, tetraphenylcyclopentadienone labelled at the 3,4-positions, and dichlorodiphenylmethane labelled at the α-carbon. Signs of coupling constants were determined by the symmetrical double labelling (SDL) method. Coupling constants over as many as five bonds are reported. Two-bond couplings between carbons in the aromatic skeleton belong to different classes according to the nature of the coupling path. The magnitudes of three-bond coupling constants between such carbons correlate linearly with π-bond orders and a separation of the δ- and π-contributions is evident. The three-bond couplings between the 2-position in a phenyl substituent and the olefinic β-position or a corresponding aromatic position depend on the out-of-plane twist of the phenyl ring and may lead to information about the twist angle. Contrary to findings with aromatic carbonyl compounds two- and three-bond couplings to the α-carbon in the present compounds are fairly constant. The reported data suggest that the signs of coupling constants over more than two bonds alternate in aromatic systems. Carbon-13, carbon-13 coupling constants in naphthalene have been calculated by the INDO-SOS method.  相似文献   

8.
Medium-chain acyl-CoA dehydrogenase (MCAD) catalyzes the flavin-dependent oxidation of fatty acyl-CoAs to the corresponding trans-2-enoyl-CoAs. The interaction of hexadienoyl-CoA (HD-CoA), a product analogue, with recombinant pig MCAD (pMCAD) has been studied using (13)C NMR and (1)H-(13)C HSQC spectroscopy. Upon binding to oxidized pMCAD, the chemical shifts of the C1, C2, and C3 HD carbons are shifted upfield by 12.8, 2.1, and 13.8 ppm, respectively. In addition, the (1)H chemical shift of the C3-H is also shifted upfield by 1.31 ppm while the chemical shift of the C4 HD-CoA carbon is unchanged upon binding. These changes in chemical shift are unexpected given the results of previous Raman studies which revealed that the C3=C2-C1=O HD enone fragment is polarized upon binding to MCAD such that the electron density at the C3 and C1 carbons is reduced, not increased (Pellet et al. Biochemistry 2000, 39, 13982-13992). To investigate the apparent discrepancy between the NMR and Raman data for HD-CoA bound to MCAD, (13)C NMR spectra have been obtained for HD-CoA bound to enoyl-CoA hydratase, an enzyme system that has also previously been studied using Raman spectroscopy. Significantly, binding to enoyl-CoA hydratase causes the chemical shifts of the C1 and C3 HD carbons to move downfield by 4.8 and 5.6 ppm, respectively, while the C2 resonance moves upfield by 2.2 ppm, in close agreement with the alterations in electron density at these carbons predicted from Raman spectroscopy (Bell, A. F.; Wu, J.; Feng, Y.; Tonge, P. J. Biochemistry 2001, 40, 1725-33). The large increase in shielding experienced by the C1 and C3 HD carbons in the HD-CoA/MCAD complex is proposed to arise from the ring current field from the isoalloxazine portion of the flavin cofactor. The flavin ring current, which is only present when the enzyme is placed in an external magnetic field, also explains the differences in (13)C NMR chemical shifts for acetoacetyl-CoA when bound as an enolate to MCAD and enoyl-CoA hydratase and is used to rationalize the observation that the line widths of the C1 and C3 resonances are narrower when the ligands are bound to MCAD than when they are free in the protein solution.  相似文献   

9.
Ketones are a major class of organic chemicals and solvents, which contribute to hydrocarbon sources in the atmosphere, and are important intermediates in the oxidation and combustion of hydrocarbons and biofuels. Their stability, thermochemical properties, and chemical kinetics are important to understanding their reaction paths and their role as intermediates in combustion processes and in atmospheric chemistry. In this study, enthalpies (ΔH°(f 298)), entropies (S°(T)), heat capacities (C(p)°(T)), and internal rotor potentials are reported for 2-butanone, 3-pentanone, 2-pentanone, 3-methyl-2-butanone, and 2-methyl-3-pentanone, and their radicals corresponding to loss of hydrogen atoms. A detailed evaluation of the carbon-hydrogen bond dissociation energies (C-H BDEs) is also performed for the parent ketones for the first time. Standard enthalpies of formation and bond energies are calculated at the B3LYP/6-31G(d,p), B3LYP/6-311G(2d,2p), CBS-QB3, and G3MP2B3 levels of theory using isodesmic reactions to minimize calculation errors. Structures, moments of inertia, vibrational frequencies, and internal rotor potentials are calculated at the B3LYP/6-31G(d,p) density functional level and are used to determine the entropies and heat capacities. The recommended ideal gas-phase ΔH°(f 298), from the average of the CBS-QB3 and G3MP2B3 levels of theory, as well as the calculated values for entropy and heat capacity are shown to compare well with the available experimental data for the parent ketones. Bond energies for primary, secondary, and tertiary radicals are determined; here, we find the C-H BDEs on carbons in the α position to the ketone group decrease significantly with increasing substitution on these α carbons. Group additivity and hydrogen-bond increment values for these ketone radicals are also determined.  相似文献   

10.
Synthetically generated metallopeptides have the potential to serve a variety of roles in biotechnology applications, but the use of such systems is often hampered by the inability to control secondary reactions. We have previously reported that the Ni(II) complex of the tripeptide lll-asparagine-cysteine-cysteine, lll-Ni(II)-NCC, undergoes metal-facilitated chiral inversion to dld-Ni(II)-NCC, which increases the observed superoxide scavenging activity. However, the mechanism for this process remained unexplored. Electronic absorption and circular dichroism studies of the chiral inversion reaction of Ni(II)-NCC reveal a unique dependence on dioxygen. Specifically, in the absence of dioxygen, the chiral inversion is not observed, even at elevated pH, whereas the addition of O(2) initiates this reactivity and concomitantly generates superoxide. Scavenging experiments using acetaldehyde are indicative of the formation of carbanion intermediates, demonstrating that inversion takes place by deprotonation of the alpha carbons of Asn1 and Cys3. Together, these data are consistent with the chiral inversion being dependent on the formation of a Ni(III)-NCC intermediate from Ni(II)-NCC and O(2). The data further suggest that the anionic thiolate and amide ligands in Ni(II)-NCC inhibit Cα-H deprotonation for the Ni(II) oxidation state, leading to a stable complex in the absence of O(2). Together, these results offer insights into the factors controlling reactivity in synthetic metallopeptides.  相似文献   

11.
Mesoporous carbons were synthesized from polyacrylonitrile (PAN) using ordered and disordered mesoporous silica templates and were characterized using transmission electron microscopy (TEM), powder X-ray diffraction, nitrogen adsorption, and thermogravimetry. The pores of the silica templates were infiltrated with carbon precursor (PAN) via polymerization of acrylonitrile from initiation sites chemically bonded to the silica surface. This polymerization method is expected to allow for a uniform filling of the template with PAN and to minimize the introduction of nontemplated PAN, thus mitigating the formation of nontemplated carbon. PAN was stabilized by heating to 573 K under air and carbonized under N2 at 1073 K. The resulting carbons exhibited high total pore volumes (1.5-1.8 cm3 g(-1)), with a primary contribution of the mesopore volume and with relatively low microporosity. The carbons synthesized using mesoporous templates with a 2-dimensional hexagonal structure (SBA-15 silica) and a face-centered cubic structure (FDU-1 silica) exhibited narrow pore size distributions (PSDs), whereas the carbon synthesized using disordered silica gel template had broader PSD. TEM showed that the SBA-15-templated carbon was composed of arrays of long, straight, or curved nanorods aligned in 2-D hexagonal arrays. The carbon replica of FDU-1 silica appeared to be composed of ordered arrays of spheres. XRD provided evidence of some degree of ordering of graphene sheets in the carbon frameworks. Elemental analysis showed that the carbons contain an appreciable amount of nitrogen. The use of our novel infiltration method and PAN as a carbon precursor allowed us to obtain ordered mesoporous carbons (OMCs) with (i) very high mesopore volume, (ii) low microporosity, (iii) low secondary mesoporosity, (iv) large pore diameter (8-12 nm), and (v) semi-graphitic framework, which represent a desirable combination of features that has not been realized before for OMCs.  相似文献   

12.
The mechanisms for the major fragmentations obtained with selected substituted uracils are discussed. Interpretation of data was facilitated by use of metastable peaks, high-resolution data, and low-voltage spectra. The major fragmentation obtained with N-alkyl substituted uracils, when the alkyl group contains 2 or more carbons, is due to cleavage of the alkyl substituent. This cleavage is accompanied by a rearrangement of 1 or 2 hydrogens from the alkyl group to the uracil ring. Possible mechanisms for the rearrangements are discussed. It was found that the molecular ion of 1- and 3-alkyl substituted uracils (where the alkyl group has 2 or more carbons) does not undergo the expected ‘retro Diels-Alder Reaction’. Instead, the odd-electron ion formed by loss of the alkyl substituent with a single hydrogen rearrangement undergoes this reaction (loses HNCO). Since it is formed as a secondary reaction product, the relative abundance of the ‘retro Diels-Alder’ fragment is low compared to what is obtained in the spectra of the simple uracils. The ‘retro Diels-Alder Reaction’ can be used to differentiate between 2- and 4-thiouracils, and between 1- and 3-methyl and phenyl substituted uracils. It was found that 1- and 3-alkyl substituted uracils (alkyl group of 2 or more carbons) can be differentiated by the mass of the M-alkyl fragment since the 3-substituted compounds give predominantly a double hydrogen rearrangement and the 1-substituted compound gives mainly a single hydrogen rearrangement. In addition the intensity of the molecular ion, relative to the M-alkyl ion, is considerably stronger in the 1-substituted uracils.  相似文献   

13.
Nitrogen doped carbons are an important family of materials with ideal activity for oxygen reduction reaction(ORR). It is always interesting to search functional carbons with high heteroatom contents and desirable structure for ORR. Within this study, the surface modification of carbon nanotubes(CNTs) via hydrothermal carbonization(HTC) technique in the presence of glucose and urea was reported, where the surface of CNTs is successfully coated by nitrogen containing hydrothermal carbon layers. The resulting composite combines both advantages of the outstanding electrical conductivity of CNTs and the effective ORR active sites provided by doped nitrogen in the HTC carbon layers. By controlling the ratio of glucose and urea, the nitrogen contents coated on the surface of CNTs can reach up to 1.7 wt%. The resulting materials show outstanding electrochemical activity towards ORR in alkaline electrolyte, making it one of the valuable metal-free electrode materials and a competent alternative to the state-of-the-art Pt/C catalyst.  相似文献   

14.
Highly porous carbons have been prepared by the chemical activation of two mesoporous carbons obtained by using hexagonal- (SBA-15) and cubic (KIT-6)-ordered mesostructured silica as hard templates. These materials were investigated as sorbents for CO(2) capture. The activation process was carried out with KOH at different temperatures in the 600-800°C range. Textural characterization of these activated carbons shows that they have a dual porosity made up of mesopores derived from the templated carbons and micropores generated during the chemical activation step. As a result of the activation process, there is an increase in the surface area and pore volume from 1020 m(2)g(-1) and 0.91 cm(3)g(-1) for the CMK-8 carbon to a maximum of 2660 m(2)g(-1) and 1.38 cm(3)g(-1) for a sample activated at 800°C (KOH/CMK-8 mass ratio of 4). Irrespective of the type of templated carbon used as precursor or the operational conditions used for the synthesis, the activated samples exhibit similar CO(2) uptake capacities, of around 3.2 mmol CO(2)g(-1) at 25°C. The CO(2) capture capacity seems to depend on the presence of narrow micropores (<1 nm) rather than on the surface area or pore volume of activated carbons. Furthermore, it was found that these porous carbons exhibit a high CO(2) adsorption rate, a good selectivity for CO(2)-N(2) separation and they can be easily regenerated.  相似文献   

15.
Practical catalytic cross-coupling of secondary alkyl electrophiles with secondary alkyl nucleophiles under Cu catalysis has been realized. The use of TMEDA and LiOMe is critical for the success of the reaction. This cross-coupling reaction occurs via an S(N)2 mechanism with inversion of configuration and therefore provides a general approach for the stereocontrolled formation of C-C bonds between two tertiary carbons from chiral secondary alcohols.  相似文献   

16.
13C NMR chemical shift assignments for 1,2-C60H2 (1) and a series of 13C-labeled fullerene derivatives with three-, four-, and five-membered annulated rings (2-4) were assigned using 2D INADEQUATE spectroscopy and examined for trends that correspond to the changes in strain in the fullerene cage. Chemical shifts of equivalent carbons from 1-4 show that eight carbons trend downfield (carbons 5, 7, 8, 9, 11, 15, 16, 17) and the remaining six carbons (4, 6, 10, 12, 13, 14) trend upfield with increasing ring size. While the average chemical shift is nearly constant, the dispersion is greatest when the local strain is the least, in 1,2-C60H2 (1). 13C chemical shifts are not well correlated with trends in ring size, with strain as measured by the pyramidalization angle of nearby carbons, or with the geometry of the fullerene cage. We interpret the results as evidence that subtle geometrical changes lead to modulation of the strength of ring currents near the site of addition and, in turn, the magnetic field generated by these ring currents affects the chemical shift of carbons on the far side of the fullerene core. These results highlight ring currents as being critically important to the determination of 13C chemical shifts in fullerene derivatives.  相似文献   

17.
Textural characterization of activated carbons prepared from palm shell by thermal activation with carbon dioxide (CO(2)) gas is reported in this paper. Palm shell (endocarp) is an abundant agricultural solid waste from palm-oil processing mills in many tropical countries such as Malaysia, Indonesia, and Thailand. The effects of activation temperature on the textural properties of the palm-shell activated carbons, namely specific surface area (BET method), porosity, and microporosity, were investigated. The activated carbons prepared from palm shell possessed well-developed porosity, predominantly microporosity, leading to potential applications in gas-phase adsorption for air pollution control. Static and dynamic adsorption tests for sulfur dioxide (SO(2)), a common gaseous pollutant, were carried out in a thermogravimetric analyzer and a packed column configuration respectively. The effects of adsorption temperature, adsorbate inlet concentration, and adsorbate superficial velocity on the adsorptive performance of the prepared activated carbons were studied. The palm-shell activated carbon was found to have substantial capability for the adsorption of SO(2), comparable to those of some commercial products and an adsorbent derived from another biomass.  相似文献   

18.
We report the synthesis of zeolite-like carbon materials that exhibit well-resolved powder XRD patterns and very high surface area. The zeolite-like carbons are prepared via chemical vapor deposition (CVD) at 800 or 850 degrees C using zeolite beta as solid template and acetonitrile as carbon precursor. The zeolite-like structural ordering of the carbon materials is indicated by powder XRD patterns with at least two well-resolved diffraction peaks and TEM images that reveal well-ordered micropore channels. The carbons possess surface area of up to 3200 m2/g and pore volume of up to 2.41 cm3/g. A significant proportion of the porosity in the carbons (up to 76% and 56% for surface area and pore volume, respectively) is from micropores. Both TEM and nitrogen sorption data indicate that porosity is dominated by pores of size 0.6-0.8 nm. The carbon materials exhibit enhanced (and reversible) hydrogen storage capacity, with measured uptake of up to 6.9 wt % and estimated maximum of 8.33 wt % at -196 degrees C and 20 bar. At 1 bar, hydrogen uptake capacity as high as 2.6 wt % is achieved. Isosteric heat of adsorption of 8.2 kJ/mol indicates a favorable interaction between hydrogen and the surface of the carbons. The hydrogen uptake capacity observed for the zeolite-like carbon materials is among the highest ever reported for carbon (activated carbon, mesoporous carbon, CNTs) or any other (MOFs, zeolites) porous material.  相似文献   

19.
The active sites of the coals and carbons functionalized with added nitrogen, oxygen and iron were studied for the oxygen reduction reaction (ORR) in a fuel cell. The catalysts were characterized based on the XPS, Raman, TEM, XRD and N2 adsorption measurements. The ORR activity was promoted by the addition of iron and aluminum as the inorganic components of the ash to the ash-free brown coal. The ORR activity of the ash-components added to the ash-free brown coal was correlated to the I D/I G ratio (deficient carbon degree) and the pyridinic nitrogen based on the Raman and XPS analyses, respectively. The active sites of the brown coal were formed at the pyridinic nitrogen on parts of the defective carbons associated with iron on the alumina. On the other hand, for the nitrogen-doped carbons without iron, the ORR activity was related to the pyrrolic-NH, pyridinic nitrogen species and the defective carbon degree. Based on these results, the active sites of the iron-added and nitrogen-doped coals and carbons were the iron sites coordinated with the pyridinic nitrogen, while the active sites of the iron-free and nitrogen-doped carbons without iron were the pyrrolic-NH and pyridinic-NH+ sites of parts of the defective carbons. The difference between the active sites of the nitrogen-doped coals and carbons in the presence of iron and those in the absence of iron was discussed. These results suggested that the pyridinic N as a base site transformed into pyridinic-NH+ as an acid site by attack of the proton from the anode.  相似文献   

20.
13C NMR spectroscopy of the 2-methyl-2-butyl-1-13C cation (13C-labeled tert-amyl cation) indicates that interchange of the inside and outside carbons occurs via a barrier of 19.5 +/- 2.0 kcal/mol. A plausible mechanism involves hydride migration in the proposed 2-pentyl cation 4 to form 3-pentyl cation 5. Via the protonated cyclopropane intermediate 6, which undergoes degenerate corner-to-corner hydride shift, the secondary 3-pentyl cation 5' with the label shifted to the central carbon atom is formed. The tert-amyl cation obtained from 5' in the reverse process has the 13C label on an inside carbon atom. All intermediates and transition structures were located on the PES theoretically at the MP2/6-31G(d,p) level of theory. The rearrangement rate of the doubly labeled tert-amyl cation (methyl-13C-butyl-1-13C cation), followed by means of 13C NMR, revealed that the process that interchanges inside and outside carbons has the highest barrier. Comparison of the initial rates revealed that isotopomer 1e arises considerably more slowly than other isotopomers, indicating that in the overall rearrangement process transition structure 5-TS has the highest energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号