首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Epoxy/clay nanocomposites with a high degree of exfoliation were achieved using a so-called "slurry-compounding" process with which the dispersed state of clay in water can be successfully transferred to an epoxy matrix. In this process sodium montmorillonite was first exfoliated and suspended in water. This suspension was further treated with acetone to form a clay-acetone slurry followed by chemical modification using silane. The modified slurry was then mixed extensively with epoxy to form epoxy/nanoclay composites. It has been shown that the morphologies of clay before and after curing are quite similar and the exfoliation process is termed "slurry compounding". Furthermore, the amount of organic modifier used is only 5 wt % of clay, in contrast to conventional organoclays which normally contain at least 25-45 wt % of organic surfactant. The resulting epoxy/nanoclay composites exhibit a high degree of clay exfoliation and a better thermal mechanical property.  相似文献   

2.
Brief information is presented about the state of the world and domestic market of composite materials and epoxy resins as raw materials for polymeric matrices. It is shown that facilities for manufacture of epoxy resins should be created in the country, with a total output capacity of 40–50 thousand tons a year. p-tert-Butylphenol glycidyl ether was synthesized and its influence on the properties of composites based on ED-20 epoxy resin was examined. Dependences of the viscosity, gelation duration, glass-transition point, water-absorption capacity, and hardness of the composites on the amount of diluent were obtained. The results can be used to solve the problem of choosing the diluent in manufacture of composite materials.  相似文献   

3.
Most of the photopatterning materials based on epoxy resins utilize photoacid generators (PAGs), which generate superacids as catalysts. They have been used for high aspect ratio photoresists in the fabrication of MEMS devices. However, there is a drawback, in that the acidic species from PAGs will induce metal corrosion. One of the approaches to overcome this problem is the use of photobase generators (PBGs) because organic bases would induce no corrosion. Although there have been many previous investigations of PBGs, only a few articles have mentioned photoreactive materials relying on PBGs because of their low photosensitivity. We report here highly sensitive photopatterning materials comprising PBGs and an epoxy resin bearing carboxylic acid groups. As a result, the photopatterning materials showed higher photosensitivity than conventional epoxy resin systems. We obtained high‐photosensitivity (up to 900 mJ/cm2), high‐resolution (10‐μm line‐and‐space) patterning materials in films, 10 μm in thickness.  相似文献   

4.
Attaching electron-withdrawing substituent to organic conjugated molecules is considered as an effective method to produce n-type and ambipolar transport materials. In this work, we use density functional theory calculations to investigate the electron and hole transport properties of pentacene (PENT) derivatives after substituent and simulate the angular resolution anisotropic mobility for both electron and hole transport. Our results show that adding electron-withdrawing substituents can lower the energy level of lowest unoccupied molecular orbital (LUMO) and increase electron affinity, which are beneficial to the electron injection and ambient stability of the material. Also the LUMO electronic couplings for electron transport in these pentacene derivatives can achieve up to a hundred meV which promises good electron transport mobility, although adding electron-withdrawing groups will introduce the increase of electron transfer reorganization energy. The final results of our angular resolution anisotropic mobility simulations show that the electron mobility of these pentacene derivatives can get to several cm(2) V(-1) s(-1), but it is important to control the orientation of the organic material relative to the device channel to obtain the highest electron mobility. Our investigation provide detailed information to assist in the design of n-type and ambipolar organic electronic materials with high mobility performance.  相似文献   

5.
Anion-radical salts of 7,7,8,8-tetracyanoquinodimethane with cations on the basis of methylol- and ethylolpyridines, N-methyl- and N-ethyl alkylolpyridines, were synthesized. Their composition is determined by the method of electronic spectroscopy, and the thermal stability is studied. The nature of the salts is investigated by the method of IR spectroscopy: it is shown that the conducting properties depend both on the nature of the alkyl group and on the position of the alkylol substituent. The presence of hydroxy groups in the conducting anion-radical salts allow their application as electronic organic materials for the design of conducting film coatings.  相似文献   

6.
Near edge x-ray absorption fine structure (NEXAFS) spectroscopy has evolved into a powerful characterization tool for polymeric materials and is increasingly being used to elucidate composition and orientation in thin films of relevance to organic electronic devices. For accurate quantitative compositional analysis, insight into the electronic structure and the ability to assess molecular orientation, reliable reference spectra with known energy resolution and calibrated energy scale are required. We report a set of such NEXAFS spectra from 23 semiconducting polymers and some related materials that are frequently used in organic device research.  相似文献   

7.
A unified model, embodying the "pillow" effect and the induced density of interface states (IDIS) model, is presented for describing the level alignment at a metal/organic interface. The pillow effect, which originates from the orthogonalization of the metal and organic wave functions, is calculated using a many-body linear combination of atomic orbitals Hamiltonian, whereby electron long-range interactions are obtained using an expansion in the metal/organic wave function overlap, while the electronic charge of both materials remains unchanged. This approach yields the pillow dipole and represents the first effect induced by the metal/organic interaction, resulting in a reduction of the metal work function. In a second step, we consider how charge is transferred between the metal and the organic material by means of the IDIS model: Charge transfer is determined by the relative position of the metal work function (corrected by the pillow effect) and the organic charge neutrality level, as well as by an interface parameter S, which measures how this potential difference is screened. In our approach, we show that the combined IDIS-pillow effects can be described in terms of the original IDIS alignment corrected by a screened pillow dipole. For the organic materials considered in this paper, we see that the IDIS dipole already represents most of the realignment induced at the metal/organic interface. We therefore conclude that the pillow effect yields minor corrections to the IDIS model.  相似文献   

8.
The cost-effective production of flexible electronic components will profit considerably from the development of solution-processable, organic semiconductor materials. Particular attention is focused on soluble semiconductors for organic field-effect transistors (OFETs). The hitherto differentiation between "small molecules" and polymeric materials no longer plays a role, rather more the ability to process materials from solution to homogeneous semiconducting films with optimal electronic properties (high charge-carrier mobility, low threshold voltage, high on/off ratio) is pivotal. Key classes of materials for this purpose are soluble oligoacenes, soluble oligo- and polythiophenes and their respective copolymers, and oligo- and polytriarylamines. In this context, micro- or nanocrystalline materials have the general advantage of somewhat higher charge-carrier mobilities, which, however, could be offset in the case of amorphous, glassy materials by simpler and more reproducible processing.  相似文献   

9.
New molecular precursors to inorganic/organic hybrid network materials have been designed and synthesized. The molecules comprise multiple trialkoxysilane-terminated arms linked to an organic core. When hydrolyzed, these materials form network structures whose network elements are interconnected with flexible crosslinks. Clear, compliant glasses and thick films have been generated from a number of these precursors. They are significantly tougher and less brittle than purely inorganic glasses or conventional purely organic thermosetting materials such as epoxy resins. The gels typically lose all surface-connected porosity during drying. Gelation rates for pure star gel precursors can be extremely high; the stars can also greatly enhance condensation rates for conventional sol-gel systems based on tetraalkoxysilanes.  相似文献   

10.
Wall paintings typically contain low concentrations of organic materials within a largely inorganic matrix and are characterised by their high porosity and long-term exposure to severe environmental conditions. The identification of organic materials within specific paint or plaster layers is challenging and the inherent characteristics of wall painting samples present further complications. Embedding materials (such as epoxy, polyester and acrylic-based resins) used to produce cross-sections often infiltrate porous and leanly bound samples, and compromise the interpretation of Fourier transform infrared attenuated total reflectance (FTIR-ATR) spectra and the qualitative identification of natural organic materials. An alternative method for the preparation of cross-sections of wall painting samples was developed using cyclododecane (C(12)H(24)) as a temporary consolidant and barrier coating to encapsulate the sample, and to provide necessary support to produce a cross-section through microtoming. Impacts of traditional and novel sample preparation techniques on the identification of organic materials with micro-FTIR-ATR were examined for both replica and real wall painting samples.  相似文献   

11.
利用"活性"与"非活性"硅烷化学改性环氧涂层以提高其耐蚀性."活性"硅烷指含有可以与环氧树脂的环氧端基发生开环反应官能团的硅烷,通常为氨基硅烷;"非活性"硅烷指不与环氧端基发生反应,但在有机锡催化剂存在下可与环氧树脂骨架上的羟基发生缩合反应的硅烷.红外光谱显示,两类硅烷均可成功接枝在环氧树脂上.电化学阻抗谱(EIS)和加速腐蚀试验(Machu试验)测试表明,经硅烷化学改性后的环氧涂层均能提高其耐蚀性能.  相似文献   

12.
Electron affinity is a fundamental energy parameter of materials. In organic semiconductors, the electron affinity is closely related to electron conduction. It is not only important to understand fundamental electronic processes in organic solids, but it is also indispensable for research and development of organic semiconductor devices such as organic light-emitting diodes and organic photovoltaic cells. However, there has been no experimental technique for examining the electron affinity of organic materials that meets the requirements of such research. Recently, a new method, called low-energy inverse-photoemission spectroscopy, has been developed. A beam of low-energy electrons is focused onto the sample surface, and photons emitted owing to the radiative transition to unoccupied states are then detected. From the onset of the spectral intensity, the electron affinity is determined within an uncertainty of 0.1 eV. Unlike in conventional inverse-photoemission spectroscopy, sample damage is negligible and the resolution is improved by a factor of 2. The principle of the method and several applications are reported.
Figure
Energy level diagram of low-energy inverse photoemission spectroscopy, LEIPS (left). A beam of low-energy electrons with the kinetic energy E k is focused onto the sample surface, and photons emitted owing to the radiative transition to unoccupied states are detected. From the onset of the spectral intensity, the electron affinity E A is determined. The electron affinities of typical organic semiconductors determined using LEIPS (right).  相似文献   

13.
Synthesis of polyaniline nanofibers by "nanofiber seeding"   总被引:15,自引:0,他引:15  
Seeding a conventional chemical oxidative polymerization of aniline with even very small amounts of biological, inorganic, or organic nanofibers (usually <1%) dramatically changes the morphology of the resulting doped electronic polymer polyaniline from nonfibrillar (particulate) to almost exclusively nanofibers. The nanoscale morphology of the original seed template is transcribed almost quantitatively to the bulk precipitate. These findings could have immediate impact in the design and development of high-surface area electronic materials.  相似文献   

14.
We report theoretical analysis on the geometries and electronic properties of new conjugated compounds based on thiazolothiazole synthesized by Ando et al. (Synth. Met., 156:327 [13]). The theoretical ground-state geometry and electronic structure of the studied molecules were investigated by the density functional theory (DFT) method at Becke’s three-parameter functional and Lee–Yang–Parr functional (B3LYP) level with 6-31G(d,p) basis set. The effects of the ring structure and the substituents on the geometries and electronic properties of these materials are discussed to investigate the relationship between molecular structure and optoelectronic properties. This investigation was used to drive further syntheses towards compounds more useful as active optoelectronic materials. Theoretical knowledge of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels of the components is basic in studying organic solar cells, so the HOMO, LUMO, and gap energy V oc (open-circuit voltage) of the studied compounds are calculated and discussed. These properties suggest these materials as good candidates for use in organic dye-sensitized solar cells.  相似文献   

15.
Understanding the relationship between molecular/macromolecular architecture and organic thin film transistor (TFT) performance is essential for realizing next-generation high-performance organic electronics. In this regard, planar π-conjugated, electron-neutral (i.e., neither highly electron-rich nor highly electron-deficient) building blocks represent a major goal for polymeric semiconductors, however their realization presents synthetic challenges. Here we report that an easily accessible (minimal synthetic steps), electron-neutral thienyl-vinylene (TVT)-based building block having weak intramolecular S···O "conformational locks" affords a new class of stable, structurally planar, solution-processable, high-mobility, molecular, and macromolecular semiconductors. The attraction of merging the weak TVT electron richness with supramolecular planarization is evident in the DFT-computed electronic structures, favorable MO energetics, X-ray diffraction-derived molecular structures, experimental lattice coehesion metrics, and excellent TFT performance. TVT-based polymer TFTs exhibit stable carrier mobilities in air as high as 0.5 and 0.05 cm(2)/V·s (n- and p-type, respectively). All-TVT polymer-based complementary inverter circuitry exhibiting high voltage gains (~50) and ring oscillator circuitry with high f(osc)(~1.25 kHz) is readily fabricated from these materials by simple inkjet printing.  相似文献   

16.
The composites comprising vertically aligned network of copper nanowires (CuNWs) in the presence of cellulose nanofibers were fabricated by using the freeze‐templating method and the effect of aspect ratio (A/R) of CuNWs on the thermal conductivity of epoxy composites was investigated. The thermal conductivity of epoxy composites increased to 0.79 W m?1 K?1 at 1.12 vol% of high A/R CuNWs loading, corresponding to the thermal conductivity enhancement of 365% as compared to the pure epoxy. The thermal conductivity of vertically aligned higher A/R CuNWs/epoxy, which is 38.5% and 51.9% higher than those of the lower A/R CuNWs and the randomly aligned CuNWs, respectively. The application of the epoxy composites in heat dissipation was demonstrated by the temperature changes of composites on a hot plate with the increase of heating time. These results indicate that the thermally conductive composites in this study could be applied for thermal dissipating materials in electronic devices.  相似文献   

17.
A general procedure is proposed for the rapid development of a reversed-phase liquid chromatographic (RP-LC) separation that is "orthogonal" to a pre-existing ("primary") method for the RP-LC separation of a given sample. The procedure involves a change of the mobile-phase organic solvent (B-solvent), the replacement of the primary column by one of very different selectivity, and (only if necessary) a change in mobile phase pH or the use of a third column. Following the selection of the "orthogonal" B-solvent, column and mobile phase pH, further optimization of peak spacing and resolution can be achieved by varying separation temperature and either isocratic %B or gradient time. The relative "orthogonality" of the primary and "orthogonal" RP-LC methods is then evaluated from plots of retention for one method versus the other. The present procedure was used to develop "orthogonal" methods for nine routine RP-LC methods from six pharmaceutical analysis laboratories. The relative success of this approach can be judged from the results reported here.  相似文献   

18.
Nature excels at engineering materials by using the principles of chemical synthesis and molecular self-assembly with the help of noncovalent forces. Learning from these phenomena, scientists have been able to create a variety of self-assembled artificial materials of different size, shapes, and properties for wide ranging applications. An area of great interest in this regard is solvent-assisted gel formation with functional organic molecules, thus leading to one-dimensional fibers. Such fibers have improved electronic properties and are potential soft materials for organic electronic devices, particularly in bulk heterojunction solar cells. Described herein is how molecular self-assembly, which was originally proposed as a simple laboratory curiosity, has helped the evolution of a variety of soft functional materials useful for advanced electronic devices such as organic field-effect transistors and organic solar cells. Highlights on some of the recent developments are discussed.  相似文献   

19.
We report the use of an epoxy based hybrid sol–gel material as negative resist for electron beam lithography (EBL). The matrix has been prepared starting from 3-glycidoxypropyltrimethoxysilane as specific organic–inorganic precursor and the synthesis has been strictly controlled in order to preserve the epoxy ring and to obtain a proper inorganic cross-linking degree. The film has been exposed to an electron beam, inducing the polymerization of the organic part and generating the film hardening. Preliminary results of a resolution test on the synthesized epoxy based sol–gel material, performed with electron beam lithography, are presented. Structures below 300 nm were achieved. The direct nanopatterning of this hybrid sol–gel system simplify the nanofabrication process and can be exploited in the realization of photonic devices. A demonstration has been carried out doping the hybrid films with commercial Rhodamine 6G and reproducing an already tested laser structure.  相似文献   

20.
Electroactive organic molecules have received a lot of attention in the field of electronics because of their fascinating electronic properties, easy functionalization and potential low cost towards their implementation in electronic devices. In recent years, electroactive organic molecules have also emerged as promising building blocks for the design and construction of crystalline porous frameworks such as metal–organic frameworks (MOFs) and covalent-organic frameworks (COFs) for applications in electronics. Such porous materials present certain additional advantages such as, for example, an immense structural and functional versatility, combination of porosity with multiple electronic properties and the possibility of tuning their physical properties by post-synthetic modifications. In this Review, we summarize the main electroactive organic building blocks used in the past few years for the design and construction of functional porous materials (MOFs and COFs) for electronics with special emphasis on their electronic structure and function relationships. The different building blocks have been classified based on the electronic nature and main function of the resulting porous frameworks. The design and synthesis of novel electroactive organic molecules is encouraged towards the construction of functional porous frameworks exhibiting new functions and applications in electronics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号