首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 281 毫秒
1.
微分方程-u"=λ2u+|u'|β边值问题正解的存在唯一性   总被引:1,自引:0,他引:1  
本文讨论一类不满足Nagumo条件的微分方程边值问题 -u′′=λ2u+|u′|β,u(0)=u(1)=0 正解的存在唯一性问题,其中β>2 为常数,λ>0 为参数.证明了对每一β>2,存在λ*=λ*(β)∈(0,π),边值问题存在属于C1[0,1]正解当且仅当∈(0,π),此时正解唯一,当λ*=λ*(β)时,边值问题存在正解u∈C1(0,1)∩C[0,1],u′(0)=∞,u′(1)=-∞,并证明了(x).  相似文献   

2.
越过临界状态的奇异扩散方程   总被引:1,自引:0,他引:1  
潘佳庆 《数学年刊A辑》2005,26(3):427-434
本文讨论越过临界状态的奇异扩散方程Cauchy问题和带非线性边界条件的第二边值问题的可解性与不可解性.主要结果是(1)若‖u0‖L1(R)<+∞,则对任意的正数T,方程的Cauchy问题在带型区域QT=R×(0,T)中不存在关于变量x为L1(R)可积的正解;(2)当且仅当T≤T0,矩形区域GT=(0,1)×(0,T)中的一类非线性边值问题存在唯一的经典解,其中T0=u0=∫10u0(x)dx.  相似文献   

3.
四阶边值问题正解的存在性与多解性   总被引:24,自引:1,他引:23  
本文讨论了非线性四阶边值问题u^(4)(t)=φ(t)f(u(t),u“(t),t∈(0,1),u(0)=u(1)=u“(0) =u“(1)=0正确的存在性,其中φ(t)∈C([0,1],[0,∞)),f(u,v)∈C([0,∞],[0,∞))。利用锥压缩与锥拉伸不动点定理,给出了该问题正解存在与多个正解存在的充分条件。  相似文献   

4.
利用Leggett-Williams不动点定理,并赋予f,g一定的增长条件,证明了二阶多点微分方程组边值问题u″+f(t,u,v)=0,v″+g(t,u,v)=0,0 t 1,u(0)=v(0)=0,u(1)-∑n-2i=1kiu(ξi)=0,v(1)-∑m-2i=1liv(ηi)=0,至少存在三对正解,其中f,g:[0,1]×[0,∞)×[0,∞)→[0,∞)是连续的.  相似文献   

5.
考虑二阶三点边值问题系统-u"=f(t,v),t∈(0,1),-v"=g(t,u),t∈(0,1),u(0)=αu(η),u(1)=βu(η),v(0)=αv(η),v(1)=βv(η),其中f,g∈C([0,1]×R+,R+),g(t,0)(=)0,η∈(0,1)且0<β≤α<1.首先给出了线性边值问题的Green函数;其次,给出了Green函数的一些很好的性质;最后,运用锥上拉伸与压缩不动点定理研究了上述边值问题系统至少一个或多个正解的存在性.  相似文献   

6.
讨论二阶四点微分方程组边值问题u″+p(t)f(t,u(t),v(t))=0,0 t 1,v″+q(t)g(t,u(t),v(t))=0,0 t 1,u(0)=a1x(ξ1),u(1)=b1x(η1)v(0)=a2x(ξ2),v(1)=b2x(η2)如果函数f,g:[0,1]×[0,∞)×[0,∞)→[0,∞)是连续的,并赋予f、g一定的增长条件,利用Leggett-Williama不动点定理,证明了上述边值问题至少存在三对正解.  相似文献   

7.
利用Leggett-Williams不动点定理,并赋予f,g一定的增长条件,证明了二阶多点微分方程组边值问题u″+f(t,u,v)=0,v″+g(t,u,v)=0,0≤t≤1,u(0)=v(0)=0,u(1)-∑n-2i=1kiu(ξi)=0,v(1)-∑m-2i=1liv(ηi)=0,至少存在三对正解,其中f,g:[0,1]×[0,∞)×[0,∞)→[0,∞)是连续的.  相似文献   

8.
一类奇异非线性三点边值问题的正解   总被引:24,自引:0,他引:24       下载免费PDF全文
应用锥上的不动点定理,建立了奇异非线性三点边值问题(u″(t)+a(t)f(u)=0,0<t<1,αu(0)-βu′(0)=0,u(1)-ku(η)=0)正解的一个存在性定理.这里η∈(0,1)是一个常数,a∈C( (0,1),[0,+∞)),f∈C([0,+∞),[0,+∞))  相似文献   

9.
一类非线性m-点边值问题正解的存在性   总被引:26,自引:4,他引:22  
马如云 《数学学报》2003,46(4):785-794
设α∈C[0,1],b∈C([0,1],(-∞,0)).设φ(t)为线性边值问题 u″+a(t)u′+b(t)u=0, u′(0)=0,u(1)=1的唯一正解.本文研究非线性二阶常微分方程m-点边值问题 u″+a(t)u′+b(t)u+h(t)f(u)=0, u′(0)=0,u(1)-sum from i=1 to(m-2)((a_i)u(ξ_i))=0正解的存在性.其中ξ_i∈(0,1),a_i∈(0,∞)为满足∑_(i=1)~(m-2)a_iφ_1(ξ_i)<1的常数,i∈{1,…,m-2}.通过运用锥上的不动点定理,在f超线性增长或次线性增长的前提下证明了正解的存在性结果.  相似文献   

10.
利用不动点和度理论,证明了四阶周期边值问题u(4)(t)-βu″(t)+αu(t)=λf(t,u(t)),0≤t≤1,u(i)(0)=u(i)(1),i=0,1,2,3,至少存在两个正解,其中β>-2π2,0<α<(1/2β+2π2)2,α/π4+β/π2+1>0,f:[0,1]×[0,+∞)→[0,+∞)是连续函数,λ>0是常数.  相似文献   

11.
The Volterra integrodifferential equation $$\begin{array}{*{20}c} {u_t (t,x) + \smallint '_0 a(t - s)( - \Delta u(s,x) + f(x,u(s,x)))ds = h(t,x),,} \\ {t > 0,x \in \Omega \subset R^N ,} \\ \end{array} $$ together with boundary and initial conditions is considered. The existence of global solutions (in time) is established under weak assumptions onf. An application in heat flow is also indicated.  相似文献   

12.
讨论以下非线性分数阶边值问题:cD_(0+)cD_(0+)αu(t)+λa(t)f(u(t))=0,0cD_(0+)cD_(0+)α是Caputo导数,λ>0.利用Krasnoselskiis不动点定理,得到其正解存在与不存在的充分条件,最后给出一个例子验证我们的结论.  相似文献   

13.
ln this paper we consider the model problem for a second order quasilinear degenerate parabolic equation {D_xG(u) = t^{2N-1}D²_xK(u) + t^{N-1}D_x,F(u) \quad for \quad x ∈ R,t > 0 u(x,0) = A \quad for \quad x < 0, u(x,0) = B \quad for \quad x > 0 where A < B, and N > O are given constants; K(u) =^{def} ∫^u_Ak(s)ds, G(u)=^{def} ∫^u_Ag(s)ds, and F(u) =^{def} ∫^u_Af(s)ds are real-valued absolutely continuous functions defined on [A, B] such that K(u) is increasing, G(u) strictly increasing, and \frac{F(B)}{G(B)}G(u) - F(u) nonnegative on [A, B]. We show that the model problem has a unique discontinuous solution u_0 (x, t) when k(s) possesses at least one interval of degeneracy in [A, B] and that on each curve of discontinuity, x = z_j(t) =^{def} s_jt^N, where s_j= const., j=l,2, …, u_0(x, t) must satisfy the following jump conditions, 1°. u_0(z_j(t) - 0, t) = a_j, u_0 (z_j(t) + 0, t) = b_j, and u_0(z_j(t) - 0, t) = [a_j, b_j] where {[a_j, b_j]; j = 1, 2, …} is the collection of all intervals of degeneracy possessed by k (s) in [A, B], that is, k(s) = 0 a. e. on [a_j, b_j], j = 1, 2, …, and k(s) > 0 a. e. in [A, B] \U_j[a_j, b_j], and 2°. (z_j(t)G(u_0(x, t)) + t^{2N-1}D_xK(u_0(x, t)) + t^{N-1}F(u_0(x, t)))|\frac{s=s_j+0}{s=s_j-0} = 0  相似文献   

14.
一类奇异半线性热方程初值问题解 的唯一性结果   总被引:6,自引:0,他引:6  
蹇素雯  杨凤藻 《数学学报》2000,43(2):301-308
设u(t,x),u(t,x)为初值问题在带形域ST=(0,T)×Rn内的两个非负经曲解,f(x)连续有界非负的实函数,则有如下的结果:(1)若f(x)不恒为零,则在ST中u(t,x);(2)若γ>1,则在ST中u(t,x)u(t,x);(3)若0>γ>1,f(x)0,则问题(1.1),(1.2)的解不唯一且它的所有非平凡解的集合为u(t,s)=这里s≥0是参数,其中记号(γ)+=max{γ,0}.  相似文献   

15.
This paper deals with the question of the existence of classical solutions for the equations $$\frac{{\partial ^{2} u}{\partial t^{2} }} + \sum_{\begin{subarray}{l} |\alpha| \leqslant m \\ | \beta | \leqslant m \end{subarray}} D^{\alpha} (A_{\alpha \beta } (x,t) D^{\beta} u) = f (t,x,u)$$ on [0,T] × G. G is a bounded or unbounded domain; the differential operator in the space variables is elliptic; the initial values of u are prescribed and Dαu (t,x) vanishes for (t,x) ∈ [0,T] × ?G, |α|≤ m?1. First we develop a method for solving regularly linear wave equations. In contrast to the usual compatibility conditions, our method requires less differentiability in t but imposes some boundary conditions on f(t). It allows some applications to nonlinear problems which will be treated in the second part of this paper and which e.g. enable us to solve ?2 u/?t2?A(t)u+u3=f.  相似文献   

16.
We consider the boundary value problem for the quasilinear equation div(A(|Du|)Du) + f(u) = 0, u > 0, x ∈ B_R(0), u|_{∂B_R(0)} = 0, where A and f are continuous functions in (0, ∞) and f is positive in (0, 1), f(1) = 0. We prove that (1) if f is strictly decreasing, the problem has a unique classical radial solution for any real number R > 0; (2) if f is not monotonous, the problem has at least one classical radial solution for some R > 0 large enough.  相似文献   

17.
We study the large time behavior of the solution u to an initial and boundary value problem related to the following integro-differential equation $$ u_{tt} = G_0 \Delta u + \int_0^t G'(t-s) \Delta u(x, s)\, ds - a u_t \eqno(0.1) $$ where G 0 , a are real constant coefficients, G 0 > 0, a S 0 and $ G\,' \in L^1({{\shadR}}^ + ) \cap L^2({{\shadR}}^ + ), G\,' \le 0 $ . It is known that, when G ' L 0 and a > 0, the solution u of (0.1) exponentially decays. Here we prove that, for any nonnegative a and for any $ G ' \not \equiv 0 $ , the solution u of the Eq. (0.1) exponentially decays only if the relaxation kernel G ' does. In other words, the introduction of the dissipative term related to G ' does not allow the exponential decay due to the presence of the positive coefficient a . We also prove analogous results for the polynomial decay.  相似文献   

18.
<正> 本文研究二阶半线性椭圆边值问题■的多重解(符号详见§3),其中φ(x,t)允许对t是不连续的.一些自由边界问题可以化归这类问题.为了统一处理φ(x,t)对t连续与不连续两种情形,我们采用集值映射的观点.为此推广了经典的算子与Hammerstein算子到集值映射,并发展了集值映射的Leray-Schauder度理论;与已有的集值映射理论不同,现在处理的是映射串(定  相似文献   

19.
For the generator A of a C 0-semigroup on a Banach space (X, ∥·∥), we apply the perturbation of Desch-Schappacher type to solve the Volterra integordifferential equation VE $$\left\{ \begin{gathered} \frac{{du\left( t \right)}}{{dt}} = A\left( {u\left( t \right) + \int_0^t {a\left( {t - s} \right)B_1 u\left( s \right)ds + B_2 u\left( t \right) + B_3 f\left( t \right)} } \right) \hfill \\ + \int_0^t {b\left( {t - s} \right)B_4 u\left( s \right)ds + B_5 u\left( t \right) + g\left( t \right),t \geqslant 0,} \hfill \\ u\left( 0 \right) = u_0 , \hfill \\ \end{gathered} \right.$$ > which can be applied to treat boundary value problems and inhomogeneous retarded differential equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号