首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction forces between layers of the triblock copolymer Pluronic F108 adsorbed onto hydrophobic radio frequency glow discharge (RFGD) thin film surfaces and hydrophilic silica, in polymer-free 0.15 M NaCl solution, have been measured using the atomic force microscope (AFM) colloid probe technique. Compression of Pluronic F108 layers adsorbed on the hydrophobic RFGD surfaces results in a purely repulsive force due to the steric overlap of the layers, the form of which suggests that the PEO chains adopt a brush conformation. Subsequent fitting of these data to the polymer brush models of Alexander-de Gennes and Milner, Witten, and Cates confirms that the adsorbed Pluronic F108 adsorbs onto hydrophobic surfaces as a polymer brush with a parabolic segment density profile. In comparison, the interaction between Pluronic F108 layers adsorbed on silica exhibits a long ranged shallow attractive force and a weaker steric repulsion. The attractive component is reasonably well described by van der Waals forces, but polymer bridging cannot be ruled out. The weaker steric component of the force suggests that the polymer is less densely packed on the surface and is less extended into solution, existing as polymeric isolated mushrooms. When the surfaces are driven together at high piezo ramp velocities, an additional repulsive force is measured, attributable to hydrodynamic drainage forces between the surfaces. In comparing theoretical predictions of the hydrodynamic force to the experimentally obtained data, agreement could only be obtained if the flow profile of the aqueous solution penetrated significantly into the polymer brush. This finding is in line with the theoretical predictions of Milner and provides further evidence that the segment density profile of the adsorbed polymer brush is parabolic. A velocity dependent additional stepped repulsive force, reminiscent of a solvation oscillatory force, is also observed when the adsorbed layers are compressed under high loads. This additional force is presumably a result of hindered drainage of water due to the presence of a high volume fraction of polymer chains between the surfaces.  相似文献   

2.
Rupture of wetting films caused by nanobubbles   总被引:6,自引:0,他引:6  
It is now widely accepted that nanometer sized bubbles, attached at a hydrophobic silica surface, can cause rupture of aqueous wetting films due to the so-called nucleation mechanism. But the knowledge of the existence of such nanobubbles does not give an answer to how the subprocesses of this rupture mechanism operate. The aim of this paper is to describe the steps of the rupture process in detail: (1) During drainage of the wetting film, the apex of the largest nanobubble comes to a distance from the wetting film surface, where surface forces are acting. (2) An aqueous "foam film" in nanoscale size is formed between the bubble and the wetting film surface; in this foam film different Derjaguin-Landau-Verwey-Overbeek (DLVO) forces are acting than in the surrounding wetting film. In the investigated system, hydrophobized silica/water/air, all DLVO forces in the wetting film are repulsive, whereas in the foam film the van der Waals force becomes attractive. (3) The surface forces over and around the apex of the nanobubble lead to a deformation of the film surfaces, which causes an additional capillary pressure in the foam film. An analysis of the pressure balance in the system shows that this additional capillary pressure can destabilize the foam film and leads to rupture of the foam film. (4) If the newly formed hole in the wetting film has a sufficient diameter, the whole wetting film is destabilized and the solid becomes dewetted. Experimental data of rupture thickness and lifetime of wetting films of pure electrolyte and surfactant solutions show that the stabilization of the foam film by surfactants has a crucial effect on the stability of the wetting film.  相似文献   

3.
Nanostructured particle coated surfaces, with hydrophobized particles arranged in close to hexagonal order and of specific diameters ranging from 30 nm up to 800 nm, were prepared by Langmuir-Blodgett deposition followed by silanization. These surfaces have been used to study interactions between hydrophobic surfaces and a hydrophobic probe using the AFM colloidal probe technique. The different particle coated surfaces exhibit similar water contact angles, independent of particle size, which facilitates studies of how the roughness length scale affects capillary forces (previously often referred to as "hydrophobic interactions") in aqueous solutions. For surfaces with smaller particles (diameter < 200 nm), an increase in roughness length scale is accompanied by a decrease in adhesion force and bubble rupture distance. It is suggested that this is caused by energy barriers that prevent the motion of the three-phase (vapor/liquid/solid) line over the surface features, which counteracts capillary growth. Some of the measured force curves display extremely long-range interaction behavior with rupture distances of several micrometers and capillary growth with an increase in volume during retraction. This is thought to be a consequence of nanobubbles resting on top of the surface features and an influx of air from the crevices between the particles on the surface.  相似文献   

4.
A theoretical analysis of the atomic force microscopy (AFM) approach–retract dynamic interaction between an air bubble and a hydrophilic silica plane was carried out based on the well-established Stokes–Reynolds–Young–Laplace model. An air bubble with different radii attached to the end of a cantilever approached the silica surface with different approach velocities in a 10?3?M KCl solution. Results showed that with increasing approach velocity (0.1, 1, and 10?µm/s), the repulsive force, flattened area of the film, and hydrodynamic suction force between the 100-µm bubble and the silica plane increased. The film continued thinning at the initial stages of bubble retraction because of the attractive hydrodynamic pressure. When the bubble size decreased, the influence of hydrodynamic pressure was less evident. The final film thickness before bubble retraction was similar to the theoretical equilibrium thickness when the Laplace pressure was equal to the disjoining pressure.  相似文献   

5.
Silica is a very interesting system that has been thoroughly studied in the last decades. One of the most outstanding characteristics of silica suspensions is their stability in solutions at high salt concentrations. In addition to that, measurements of direct-interaction forces between silica surfaces, obtained by different authors by means of surface force apparatus or atomic force microscope (AFM), reveal the existence of a strong repulsive interaction at short distances (below 2 nm) that decays exponentially. These results cannot be explained in terms of the classical Derjaguin, Landau, Verwey, and Overbeek (DLVO) theory, which only considers two types of forces: the electrical double-layer repulsion and the London-van der Waals attraction. Although there is a controversy about the origin of the short-range repulsive force, the existence of a structured layer of water molecules at the silica surface is the most accepted explanation for it. The overlap of structured water layers of different surfaces leads to repulsive forces, which are known as hydration forces. This assumption is based on the very hydrophilic nature of silica. Different theories have been developed in order to reproduce the exponentially decaying behavior (as a function of the separation distance) of the hydration forces. Different mechanisms for the formation of the structured water layer around the silica surfaces are considered by each theory. By the aid of an AFM and the colloid probe technique, the interaction forces between silica surfaces have been measured directly at different pH values and salt concentrations. The results confirm the presence of the short-range repulsion at any experimental condition (even at high salt concentration). A comparison between the experimental data and theoretical fits obtained from different theories has been performed in order to elucidate the nature of this non-DLVO repulsive force.  相似文献   

6.
In this work, we have studied the interfacial properties of cationic polyelectrolyte (PE) and silica nanoparticle (NP) systems at macroscopic silica surfaces by means of ellipsometry. The influence of adsorbed layers on the interactions between silica surfaces was also investigated using the bimorph surface force apparatus. Added nanoparticles were observed to strongly swell the interfacial polyelectrolyte layers, an effect partly related to neutralization of charged polyelectrolyte groups. The effect was more pronounced for low charged than for highly charged polyelectrolytes. Overall, the presence of nanoparticles seemed to increase the repulsive interaction measured between silica surfaces. The force measured on approach was long range and quite strongly repulsive. On separation, an attractive bridging interaction was measured for polyelectrolyte-covered surfaces. For the low charged polyelectrolyte used in the study, the force turned repulsive on addition of nanoparticles. For the highly charged polyelectrolyte used, a change from a very strong attraction (involving a jump of the surfaces out of contact) to a very long-range elastic attractive force was observed on adding nanoparticles. The long-range elastic force indicates that polymer chains and nanoparticles form a transient network in the gap between the surfaces. The observed difference in the outward force curves may explain why the addition of nanoparticles appears to improve, e.g., shear-resistance and reflocculation characteristics of polymeric flocculants. Copyright 2000 Academic Press.  相似文献   

7.
A series of non-ionic alcohol ethoxylated surfactants (with HLB within the range of 11.1–12.5) were used as dispersants during flotation of mondisperse hydrophobised silica particles (representing ink particles) in de-inking formulations. Laboratory scale flotation experiments, contact angle, dynamic surface tension and thin film drainage experiments were carried out. The reduction in dynamic surface tension at the air/solution interface (which is dependent on the adsorption kinetics) followed the order C10E6>C12E8≈C12E6>C14E6 and these values were lower than sodium oleate, which is commonly used in de-inking systems. In addition the non-ionics adsorbed on the hydrophobised silica particles reducing the contact angle. These results indicated that the non-ionic surfactant with the highest CMC (C10E6) gave (a) the highest rate of adsorption at the air/solution interface (b) the froth with the greatest water content and higher froth volume (c) the lowest reduction in contact angle and (d) the highest flotation efficiency at concentrations above the CMC. It was also observed that flotation occurred, in spite of the fact that thin-film measurements indicated that the adsorption of non-ionic at the air/solution and silica/solution interfaces reduced the hydrophobicity of the particles, as indicated by an increase in stability of the aqueous thin film between the particle and air-bubble. This result suggests that the bubble-ink particle captures mechanism (occurring through rupture of the thin aqueous film separating the interfaces) is not the only mechanism controlling the flotation efficiency and that other parameters (such as the kinetics of surfactant adsorption, foaming characteristics, and bubble size) need to be taken into account. The kinetics is important with respect to the rate of adsorption of surfactant to both interfaces. Under equilibrium conditions, this may give rise to repulsive steric forces between the air-bubble and the particles (stable aqueous thin-films). However, a lower amount of surfactant adsorbed at a freshly formed air bubble or inkparticle (caused by slow adsorption rates) will produce a lower steric repulsive force allowing effective collection of particles by the bubble. Also, it was suggested that the influence of alcohol ethoxylates on bubble-size could effect the particle capture rate and mechanical entrainment of particles in an excessively buoyant froth, which will also play an important role in the flotation recovery.  相似文献   

8.
The interaction forces between poly(N-isopropylacrylamide) (PNIPAAm)-grafted surfaces and colloidal particles in an aqueous solution were investigated using an atomic force microscope. Measurements were conducted between smooth silicon wafers on which PNIPAAm was terminally grafted and silica particles hydrophobized with a silanating reagent in an aqueous electrolyte solution under controlled temperature. Below the lower critical solution temperature (LCST) of PNIPAAm, there were large repulsive forces between the surfaces, both on approach and separation of the surfaces. On the other hand, above LCST, attractive forces were observed both in approaching and in separating force curves. When surface hydrophobicity of the particles increased, the maximum attractive force tended to increase. The changes of hydration state of the grafted PNIPAAm chains depending on temperature are considered to greatly alter the interaction force properties. The role of the intermolecular interaction between the PNIPAAm chains and the hydrophobic particles in the interaction forces is discussed.  相似文献   

9.
The adhesion forces holding micron-sized particles to solid surfaces can be studied through the detachment forces developed by the transit of an air–liquid interface in a capillary. Two key variables affect the direction and magnitude of the capillary detachment force: (i) the thickness of the liquid film between the bubble and the capillary walls, and (ii) the effective angle of the triple phase contact between the particles and the interface. Variations in film thickness were calculated using a two-phase flow model. Film thickness was used to determine the time-variation of the capillary force during transit of the bubble. The curve for particle detachment was predicted from the calculated force. This curve proved to be non-linear and gave in situ information on the effective contact angle developing at the particle–bubble interface during detachment. This approach allowed an accurate determination of the detachment force. This theoretical approach was validated using latex particles 2 μm in diameter.  相似文献   

10.
The interaction between bubbles and solid surfaces is central to a broad range of industrial and biological processes. Various experimental techniques have been developed to measure the interactions of bubbles approaching solids in a liquid. A main challenge is to accurately and reliably control the relative motion over a wide range of hydrodynamic conditions and at the same time to determine the interaction forces, bubble–solid separation and bubble deformation. Existing experimental methods are able to focus only on one of the aspects of this problem, mostly for bubbles and particles with characteristic dimensions either below 100 μm or above 1 cm. As a result, either the interfacial deformations are measured directly with the forces being inferred from a model, or the forces are measured directly with the deformations to be deduced from the theory. The recently developed integrated thin film drainage apparatus (ITFDA) filled the gap of intermediate bubble/particle size ranges that are commonly encountered in mineral and oil recovery applications. Equipped with side-view digital cameras along with a bimorph cantilever as force sensor and speaker diaphragm as the driver for bubble to approach a solid sphere, the ITFDA has the capacity to measure simultaneously and independently the forces and interfacial deformations as a bubble approaches a solid sphere in a liquid. Coupled with the thin liquid film drainage modeling, the ITFDA measurement allows the critical role of surface tension, fluid viscosity and bubble approach speed in determining bubble deformation (profile) and hydrodynamic forces to be elucidated. Here we compare the available methods of studying bubble–solid interactions and demonstrate unique features and advantages of the ITFDA for measuring both forces and bubble deformations in systems of Reynolds numbers as high as 10. The consistency and accuracy of such measurement are tested against the well established Stokes–Reynolds–Young–Laplace model. The potential to use the design principles of the ITFDA for fundamental and developmental research is demonstrated.  相似文献   

11.
The silica sphere-plate interaction forces in zirconia nanoparticle suspensions have been successfully measured to explain how negligibly charged silica microspheres can be stabilized through the addition of highly charged zirconia nanoparticles. However, the influence of nanoparticle volume fraction on the stabilization as well as how various forces (the attractive van der Waals force, repulsive electrostatic force, and depletion force) contribute to the total interaction force still remains unclear. Therefore, an effective zeta potential fitting model is developed to explain the experimental interaction force curves based on a variable effective Debye length and a measured effective zeta potential using a continuum assumption.  相似文献   

12.
Surface forces between gold surfaces were measured in pure water at temperatures in the range of 10-40 °C using an atomic force microscope (AFM). The surfaces were hydrophobized by self-assembly of alkanethiols (C(n)SH) with n=2 and 16 in ethanol solutions. The data were used to determine the changes in excess free energies (ΔG(f)) of the thin water films per unit area by using the Derjaguin approximation [1]. The free energy data were then used to determine the changes in excess film entropy (ΔS(f)) and the excess film enthalpy (ΔH(f)) per unit area. The results show that both ΔS(f) and ΔH(f) decrease with decreasing film thickness, suggesting that the macroscopic hydrophobic interaction involves building some kind of structures in the intervening thin films of water. It was found that |ΔH(f)|>|TΔS(f)|, which is a necessary condition for an attractive force to appear when the enthalpy and entropy changes are both negative. That macroscopic hydrophobic interaction is enthalpically driven is contrary to the hydrophobic interactions at molecular scale. The results obtained in the present work are used to discuss possible origins for the long-range attractions observed between hydrophobic surfaces.  相似文献   

13.
改进了现有表面力仪,使之具有更低的造价和更高的实验精度.利用改进后的表面力仪测量了0.1mol/L的NaCl溶液中两云母表面间的作用力-距离曲线;通过与计算得到的曲线对比验证了DLVO理论.结果表明:在0.1mol/L的NaCl溶液中,两云母表面间在距离较大时的作用力测量值与DLVO理论值相符合,但在距离较小时测量值出现附加的短程斥力,且此斥力呈现指数衰减规律.  相似文献   

14.
Interaction forces and adhesion between a silica sphere and a flat silica surface in aqueous electrolyte solutions were investigated by atomic force microscopy. The forces were measured as a function of surface separation, pH and NaCl concentration as the surfaces were approaching each other. The adhesion force was determined upon retraction with respect to pH, NaCl concentration and contact time. The magnitude of the long range repulsive force was decreasing with decreasing pH. A short range repulsive force was observed at pH = 2, but no long range repulsive forces were observed at this pH. Force measurements showed that adhesion of silica surfaces in water was obstructed by short and long range repulsive forces. Adhesion was enhanced when both the long and the short range repulsive force was mitigated. A maximum adhesion force of 7.8 mN/m was measured at pH = 12.5 when the short range force vanished and the long range repulsive force was reduced by increasing the NaCl concentration. At pH = 12.5, the work of adhesion was calculated to be 1.2 mJ/m2 according to the Derjaguin–Muller–Toporov (DMT) model. Adhesion energy was much less at pH = 2 (0.3 mJ/m2) due to persistive short range repulsion.  相似文献   

15.
The roughness and softness of interacting surfaces are both important parameters affecting the capillary condensation of water in apolar media, yet are poorly understood at present. We studied the water capillary adhesion between a cellulose surface and a silica colloidal probe in hexane by AFM force measurements. Nanomechanical measurements show that the Young's modulus of the cellulose layer in water is significantly less (~7 MPa) than in hexane (~7 GPa). In addition, the cellulose surface in both water and hexane is rather rough (6-10 nm) and the silica probe has a comparable roughness. The adhesion force between cellulose and silica in water-saturated hexane shows a time-dependent increase up to a waiting time of 200 s and is much (2 orders of magnitude) lower than that expected for a capillary bridge spanning the whole silica probe surface. This suggests the formation of one or more smaller bridges between asperities on both surfaces, which is confirmed by a theoretical analysis. The overall growth rate of the condensate cannot be explained from diffusion mediated capillary condensation alone; thin film flow due to the presence of a wetting layer of water at both the surfaces seems to be the dominant contribution. The logarithmic time dependence of the force can also be explained from the model of the formation of multiple capillary bridges with a distribution of activation times. Finally, the force-distance curves upon retraction show oscillations. Capillary condensation between an atomically smooth mica surface and the silica particle show less significant oscillations and the adhesion force is independent of waiting time. The oscillations in the force-distance curves between cellulose and silica may stem from multiple bridge formation between the asperities present on both surfaces. The softness of the cellulose surface can bring in additional complexities during retraction of the silica particle, also resulting in oscillations in the force-distance curves.  相似文献   

16.
Polyelectrolyte multilayer films containing nanocrystalline cellulose (NCC) and poly(allylamine hydrochloride) (PAH) make up a new class of nanostructured composite with applications ranging from coatings to biomedical devices. Moreover, these materials are amenable to surface force studies using colloid-probe atomic force microscopy (CP-AFM). For electrostatically assembled films with either NCC or PAH as the outermost layer, surface morphology was investigated by AFM and wettability was examined by contact angle measurements. By varying the surrounding ionic strength and pH, the relative contributions from electrostatic, van der Waals, steric, and polymer bridging interactions were evaluated. The ionic cross-linking in these films rendered them stable under all solution conditions studied although swelling at low pH and high ionic strength was inferred. The underlying polymer layer in the multilayered film was found to dictate the dominant surface forces when polymer migration and chain extension were facilitated. The precontact normal forces between a silica probe and an NCC-capped multilayer film were monotonically repulsive at pH values where the material surfaces were similarly and fully charged. In contrast, at pH 3.5, the anionic surfaces were weakly charged but the underlying layer of cationic PAH was fully charged and attractive forces dominated due to polymer bridging from extended PAH chains. The interaction with an anionic carboxylic acid probe showed similar behavior to the silica probe; however, for a cationic amine probe with an anionic NCC-capped film, electrostatic double-layer attraction at low pH, and electrostatic double-layer repulsion at high pH, were observed. Finally, the effect of the capping layer was studied with an anionic probe, which indicated that NCC-capped films exhibited purely repulsive forces which were larger in magnitude than the combination of electrostatic double-layer attraction and steric repulsion, measured for PAH-capped films. Wherever possible, DLVO theory was used to fit the measured surface forces and apparent surface potentials and surface charge densities were calculated.  相似文献   

17.
An atomic force microscope (AFM) is a very powerful tool to evaluate interaction forces between surfaces in liquids on the molecular scale, but the apparatus was not designed to measure forces in equilibrium. Hence, data obtained by AFM are not in equilibrium in principle. Here we propose a static method to obtain interaction forces between stationary surfaces in aqueous solutions using AFM. The validity of the proposed method was confirmed by comparing interaction forces measured by this method with those by the normal dynamic method for the system of a mica plate and a silica particle in electrolyte solutions where an equilibrium was nearly achieved because water molecules and ions moved much faster than surfaces. The applicability of this method to the measurement of hydrophobic attraction was then examined, and important information on the attraction was obtained. Copyright 2001 Academic Press.  相似文献   

18.
Surface forces were measured using an AFM with silica surfaces immersed in CnTACl (n = 12–18) solutions in the absence of added salt. The results showed long-range attractive forces that cannot be explained by the DLVO theory. The long-range attractions increased with increasing surfactant concentration, reaching a maximum at the point of charge neutralization (p.c.n.) and then decreased. The long-range forces decayed exponentially, with the decay lengths increasing from 3 to 32 nm as the chain length of the surfactants increased from C-12 to C-18. The measured forces can be fitted to the charged-patch model of Miklavic et al. [S.J. Miklavic, D.Y.C. Chan, L.R. White, T.W. Healy, J. Phys. Chem. 98 (1994) 9022–9032] by assuming patch sizes that are much larger than the values reported in the literature.

It was found that the decay length decreases linearly with the effective concentration of the CH2/CH3 groups of the CnTACl homologues raised to the power of −1/2, which is in line with the Eriksson et al.'s hydrophobic force model derived using a mean-field approach. It appears, therefore, that the long-range attractions observed in the present work are hydrophobic forces originating from changes in water structure across the thin surfactant solution film between the silica surfaces. It is conceivable that hydrocarbon chains in solution disrupt the surface-induced water structure and cause a decrease in hydrophobic force. This observation may also provide an explanation for the very long-range forces observed with silylated, LB-deposited, and thiol-coated surfaces.  相似文献   


19.
Wetting film stability and flotation kinetics   总被引:5,自引:0,他引:5  
Single bubble experiments performed with different size fractions of quartz particles and different, but known, contact angles revealed two modes of flotation dynamics in superclean water. (1.) A monotonic increase of collection efficiency Ecoll with increasing particle size was observed at high particle hydrophobicity and, correspondingly, a low wetting film stability (WFS). (2.) At low particle hydrophobicity and, correspondingly, high WFS, an extreme dependence of Ecoll on particle size was observed. The use of superclean water in our experiments prevented the retardation of bubble surface movement caused by surfactants or other impurities that is usual for other investigations and where particle-bubble inertial hydrodynamic interactions are suppressed. In the present study the free movement of the bubble surface enhances particle-bubble inertial interaction, creating conditions for different flotation modes, dependent on WFS. At the instant of inertial impact, a particle deforms the bubble surface, which may cause its rebound. Where the stability of the thin water film, formed between opposing surfaces of a bubble and a particle, is low, its rupture is accompanied with three phase contact line extension and contact angle formation before rebound. This prevents rebound, i.e. the first collision is accompanied by attachment. A high WFS prevents rupture during an impact. As a result, a contact angle does not arise and rebound is not prevented. However, rebound is accompanied by a second collision, the kinetic energy of which is smaller and can cause attachment at repetitive collision. These qualitative considerations are confirmed by the model quantification and comparison with measured Ecoll. For the first time the Sutherland equation (SE) for Ecoll is confirmed by experiment for smaller particle sizes and, correspondingly, very small Stokes numbers. The larger the particle size, the larger is the measured deviation from the SE. The SE is generalized, accounting for the centrifugal force, pressing hydrodynamic force and drainage in the low WFS case and, correspondingly, attachment occurs at first collision or during sliding. The derived generalized Sutherland equation (GSE) describes experimental data at low WFS. However, its application without account for possible rebound does not explain the measured extreme dependence in the case of high WFS. The theory for drainage during particle impact and the beginning of rebound enables conditions for either attachment or rebound in terms of the normal component of the impact velocity and the critical film thickness to be derived. Combining this condition with the GSE allowed the equation for Ecoll to be derived, accounting for attachment area shrinkage and attachment during a repetitive collision. This equation predicts the extreme dependence. Thus the WFS determines the modes of flotation dynamics and, in turn, probably affects the mechanisms, which control the flotation domain. At low WFS its upper boundary is controlled by the stability of the particle-bubble aggregate. At high WFS the upper boundary can be controlled by rebound because the latter reduces the attachment efficiency by a factor of 30 or more even with repetitive collision.  相似文献   

20.
To provide better understanding of how a protein secondary structure affects protein-protein and protein-surface interactions, forces between amphiphilic alpha-helical proteins (human apolipoprotein AII) adsorbed on a hydrophilic surface (mica) were measured using an interferometric surface force apparatus (SFA). Forces between surfaces with adsorbed layers of this protein are mainly composed of electrostatic double layer forces at large surface distances and of steric repulsive forces at small distances. We suggest that the amphiphilicity of the alpha-helix structure facilitates the formation of protein multilayers next to the mica surfaces. We found that protein-surface interaction is stronger than protein-protein interaction, probably due to the high negative charge density of the mica surface and the high positive charge of the protein at our experimental conditions. Ellipsometry was used to follow the adsorption kinetics of this protein on hydrophilic silica, and we observed that the adsorption rate is not only controlled by diffusion, but rather by the protein-surface interaction. Our results for dimeric apolipoprotein AII are similar to those we have reported for the monomeric apolipoprotein CI, which has a similar secondary structure but a different peptide sequence and net charge. Therefore, the observed force curves seem to be a consequence of the particular features of the amphiphilic alpha-helices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号