首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Ionization and fragmentation of formic acid dimers (HCOOH)(2) and (DCOOD)(2) by irradiation of femtosecond laser pulses (100 fs, 800 nm, ~1 × 10(14) W/cm(2)) were investigated by time-of-flight (TOF) mass spectrometry. In the TOF spectra, we observed fragment ions (HCOOH)H(+), (HCOOH)HCOO(+), and H(3)O(+), which were produced via the dissociative ionization of (HCOOH)(2). In addition, we found that the TOF signals of COO(+), HCOO(+), and HCOOH(+) have small but clear side peaks, indicating fragmentation with large kinetic energy release caused by Coulomb explosion. On the basis of the momentum matching among pairs of the side peaks, a Coulomb explosion pathway of the dimer dication, (HCOOH)(2)(2+) → HCOOH(+) + HCOOH(+), was identified with the total kinetic energy release of 3.6 eV. Quantum chemical calculations for energies of (HCOOH)(2)(2+) were also performed, and the kinetic energy release of the metastable dication was estimated to be 3.40 eV, showing good agreement with the observation. COO(+) and HCOO(+) signals with kinetic energies of 1.4 eV were tentatively assigned to be fragment ions through Coulomb explosion occurring after the elimination of a hydrogen atom or molecule from (HCOOH)(2)(2+). The present observation demonstrated that the formic acid dimer could be doubly ionized prior to hydrogen bond breaking by intense femtosecond laser fields.  相似文献   

2.
The fragmentation of the C(2)H(2)(2+) dication, formed upon inner shell ionization and the subsequent Auger decay, has been studied by means of Auger electron-ion and Auger electron-ion-ion coincidence spectroscopy at four different kinetic energies of the Auger electron. The experimental investigation of three fragmentation paths leading to the C(2)H(+)/H(+), C(2)(+)/H(+) and C(+)/H(+) pairs has been complemented by theoretical calculations of the Potential Energy Surfaces (PES). It is found that when the amount of internal energy of the dication increases this is mainly transferred into the kinetic energy of the fragments of the second step of the dissociation.  相似文献   

3.
The Coulomb explosion of CH(3)I in an intense (10-100 TW cm(-2)), ultrashort (50 fs) and nonresonant (804 nm) laser field has been studied experimentally and justified theoretically. Ion images have been recorded using the velocity map imaging (VMI) technique for different singly and multiply charged ion fragments, CH(3)(p+) (p = 1) and I(q+) (q ≤ 3), arising from different Coulomb explosion channels. The fragment kinetic energy distributions obtained from the measured images for these ion fragments show significantly lower energies than those expected considering only Coulomb repulsion forces. The experimental results have been rationalized in terms of one-dimensional wave packet calculations on ab initio potential energy curves of the different multiply charged species. The calculations reveal the existence of a potential energy barrier due to a bound minimum in the potential energy curve of the CH(3)I(2+) species and a strong stabilization with respect to the pure Coulombic repulsion for the higher charged CH(3)I(n+) (n = 3, 4) species.  相似文献   

4.
The energetics and dynamics of unimolecular decompositions of C70+ and its noble gas endohedral cations, Ne@C70+ and Ar@C70+, have been studied using tandem mass spectrometry techniques. The high-resolution mass-analyzed ion kinetic energy (HR-MIKE) spectra for the unimolecular reactions of C70+, Ne@CC70+, and Ar@C70+ were recorded by scanning the electrostatic analyzer and using single-ion counting that was achieved by combination of an electron multiplier, amplifier/discriminator, and multichannel analyzer. These cations dissociate unimolecularly via loss of a C2 unit, and no endohedral atom is observed as fragment. The activation energies for C2 evaporation from Ne@C70+ and Ar@C70+ are lower than those for elimination of the endohedral noble gas atoms. The kinetic energy release distributions (KERDs) for the C2 evaporation have been measured and, by use of the finite heat bath theory (FHBT), the binding energies for the C2 emission have been deduced from the KERDs. The C2 evaporation energies increase in the order DeltaEvap(C70+) < DeltaEvap(Ne@C70+) < DeltaEvap(Ar@C70+), but no big difference in the cage binding was observed for C70+, Ne@C70+, and Ar@C70+, indicating incorporations of the Ne and Ar atoms into C70 contribute a little to the stability of C70 toward C2 loss, which is in good agreement with theoretical calculations but contrasts with the findings in their C60 analogues and in metallofullerenes that the decay energies of the filled fullerenes are much higher than those of the corresponding empty cages.  相似文献   

5.
Delayed asymmetric Coulomb fission in size-selected molecular dication clusters has been recorded for the first time. Observations on (NH(3))(n)(2+) clusters show that fragmentation accompanied by charge separation can occur on a microsecond time scale, exhibits considerable asymmetry, and involves a kinetic energy release of ~0.9 eV. The fission process has been modeled by representing the fragments as charged dielectric spheres and the calculated maximum in the electrostatic interaction energy between the fragments gives a good account of the measured kinetic energy release. A simple kinetic model shows that instrumental factors may contribute to the observation of asymmetric fragmentation.  相似文献   

6.
Synthesis, characterization, and reactions of the novel manganese-oxo cubane complex [Mn(4)O(4)(O(2)PPh(2))(6)](ClO(4)), 1+ (ClO(4)(-)), are described. Cation 1+ is composed of the [Mn(4)O(4)](7+) core surrounded by six bidentate phosphinate ligands. The proton-coupled electron transfer (pcet) reactions of phenothiazine (pzH), the cation radical (pzH(.+)(ClO(4)(-)), and the neutral pz* radical with 1+ are reported and compared to Mn(4)O(4)(O(2)PPh(2))(6) (1). Compound 1+ (ClO(4)(-)) reacts with excess pzH via four sequential reduction steps that transfer a total of five electrons and four protons to 1+. This reaction forms the doubly dehydrated manganese cluster Mn(4)O(2)(O(2)PPh(2))(6) (2) and two water molecules derived from the corner oxygen atoms. The first pcet step forms the novel complex Mn(4)O(3)(OH)(O(2)PPh(2))(6) (1H) and 1 equiv of the pz+ cation by net hydride transfer from pzH. Spectroscopic characterization of isolated 1H is reported. Reduction of 1 by pzH or a series of para-substituted phenols also produces 1H via net H atom transfer. A lower limit to the homolytic bond dissociation energy (BDE) (1H --> 1 + H) was estimated to be >94 kcal/mol using solution phase BDEs for pzH and para-substituted phenols. The heterolytic BDE was estimated for the hydride transfer reaction 1H --> 1+ + H(-) (BDE approximately 127 kcal/mol). These comparisons reveal the O-H bond in 1H to be among the strongest of any Mn-hydroxo complex measured thus far. In three successive H atom transfer steps, 1H abstracts three hydrogen atoms from three pzH molecules to form complex 2. Complex 2 is shown to be identical to the "pinned butterfly" cluster produced by the reaction of 1 with pzH (Ruettinger, W. F.; Dismukes, G. C. Inorg. Chem. 2000, 39, 1021-1027). The Mn oxidation states in 2 are formally Mn(4)(2II,2III), and no further reduction occurs in excess pzH. By contrast, outer-sphere electron-only reductants such as cobaltacene reduce both 1+ and 1 to the all Mn(II) oxidation level and cause cluster fragmentation. The reaction of pzH(.+) with 1+ produces 1H and the pz+ cation by net hydrogen atom transfer, and terminates at 1 equiv of pzH(.+) with no further reaction at excess. By contrast, pz* does not react with 1+ at all, indicating that reduction of 1+ by electron transfer to form pz+ does not occur without a proton (pcet to 1+ is thermodynamically required). Experimental free energy changes are shown to account for these pcet reactions and the absence of electron transfer for any of the phenothiazine series. Hydrogen atom abstraction from substrates by 1 versus hydride abstraction by 1(+ )()illustrates the transition to two-electron one-proton pcet chemistry in the [Mn(4)O(4)](7+) core that is understood on the basis of free energy consideration. This transition provides a concrete example of the predicted lowest-energy pathway for the oxidation of two water molecules to H(2)O(2) as an intermediate within the photosynthetic water-oxidizing enzyme (vs sequential one-electron/proton steps). The implications for the mechanism of photosynthetic water splitting are discussed.  相似文献   

7.
8.
Threshold photoelectron photoion coincidence (TPEPICO) has been used to study the sequential photodissociation reaction of internal energy selected 1,2-diiodoethane cations: C(2)H(4)I(2)(+) → C(2)H(4)I(+) + I → C(2)H(3)(+) + I + HI. In the first I-loss reaction, the excess energy is partitioned between the internal energy of the fragment ion C(2)H(4)I(+) and the translational energy. The breakdown diagram of C(2)H(4)I(+) to C(2)H(3)(+), i.e., the fractional ion abundances below and above the second dissociation barrier as a function of the photon energy, yields the internal energy distribution of the first daughter, whereas the time-of-flight peak widths yield the released translational energy in the laboratory frame directly. Both methods indicate that the kinetic energy release in the I-loss step is inconsistent with the phase space theory (PST) predicted two translational degrees of freedom, but is well-described assuming only one translational degree of freedom. Reaction path calculations partly confirm this and show that the reaction coordinate changes character in the dissociation, and it is, thus, highly anisotropic. For comparison, data for the dissociative photoionization of 1,3-diiodopropane are also presented and discussed. Here, the reaction coordinate is expected to be more isotropic, and indeed the two degrees of freedom assumption holds. Characterizing kinetic energy release distributions beyond PST is crucial in deriving accurate dissociative photoionization onset energies in sequential reactions. On the basis of both experimental and theoretical grounds, we also suggest a significant revision of the 298 K heat of formation of 1,2-C(2)H(4)I(2)(g) to 64.5 ± 2.5 kJ mol(-1) and that of CH(2)I(2)(g) to 113.5 ± 2 kJ mol(-1) at 298 K.  相似文献   

9.
Density functional theory (DFT) at the hybrid B3LYP level has been applied to the germanium clusters Ge(11)(z) (z = -6, -4, -2, 0, +2, +4, +6) starting from eight different initial configurations. The global minimum within the Ge(11)(2-) set is an elongated pentacapped trigonal prism distorted from D(3)(h) to C(2v) symmetry. However, the much more spherical edge-coalesced icosahedron, also of C(2v) symmetry, expected by the Wade-Mingos rules for a 2n + 2 skeletal electron system and found experimentally in B(11)H(11)(2-) and isoelectronic carboranes, is of only slightly higher energy (+5.2 kcal/mol). Even more elongated D(3)(h) pentacapped trigonal prisms are the global minima for the electron-rich structures Ge(11)(4-) and Ge(11)(6-). For Ge(11)(4-) the C(5v) 5-capped pentagonal antiprism analogous to the dicarbollide ligand C(2)B(9)H(11)(2-) is of significantly higher energy (approximately 28 kcal/mol) than the D(3h) global minimum. The C(2v) edge-coalesced icosahedron is also the global minimum for the electron-poor Ge(11) similar to its occurrence in experimentally known 11-vertex "isocloso" metallaboranes of the type (eta(6)-arene)RuB(10)H(10). The lowest energy polyhedral structures computed for the more hypoelectronic Ge(11)(4+) and Ge(11)(6+) clusters are very similar to those found experimentally for the isoelectronic ions E(11)(7-) (E = Ga, In, Tl) and Tl(9)Au(2)(9-) in intermetallics in the case of Ge(11)(4+) and Ge(11)(6+), respectively. These DFT studies predict an interesting D(5h) centered pentagonal prismatic structure for Ge(11)(2+) and isoelectronic metal clusters.  相似文献   

10.
The authors find even-odd variations as functions of r (...+[C60]2(r+)([C60C70](r+)) electron-transfer collisions. This even-odd behavior is in sharp contrast to the smooth one for fullerene monomers and may be related to even-odd effects in dimer ionization energies in agreement with results from an electrostatic model. The kinetic energy releases for dimer dissociations [predominantly yielding intact fullerenes [C60]2(r+)-->C60(r1+)+C60(r2+) in the same (r1=r2) or nearby (r1=r2+/-1) charge states] are found to be low in comparison with the corresponding model results indicating that internal excitations of the separating (intact) fullerenes are important. Experimental appearance sizes for the heavier clusters of fullerenes [C60]n(r+) (n>3 and r=2-5) compare well with predictions from a new nearest-neighbor model assuming that r unit charges in [C60]n(r+) are localized to r C60 molecules such that the Coulomb energy of the system is minimized. The system is then taken to be stable if (i) two (singly) charged C60 are not nearest neighbors and (ii) the r C60(+) molecules have binding energies to their neutral nearest neighbors which are larger than the repulsive energies for the (r-1) C60(+)-C60(+) pairs. Essential ingredients in the nearest-neighbor model are cluster geometries and the present results on dimer stabilities.  相似文献   

11.
The bimolecular reactions of several hydrocarbon dications C(m)H(n)(2+) (m = 6-10, n = 4-9) with neutral benzene are investigated by tandem mass spectrometry using a multipole instrument. Not surprisingly, the major reaction of C(m)H(n)(2+) with benzene corresponds to electron transfer from the neutral arene to the dication resulting in the pair of monocationic products C(m)H(n)(+) + C(6)H(6)(+). In addition, also dissociative electron transfer takes place, whereas proton transfer from the C(m)H(n)(2+) dication to neutral benzene is almost negligible. Interestingly, the excess energy liberated upon electron transfer from the neutral arene to the C(m)H(n)(2+) dication is not equally partitioned in the monocationic products in that the cations arising from the dicationic precursor have a higher internal energy content than the monocations formed from the neutral reaction partner. In addition to the reactions leading to monocationic product ions, bond-forming reactions with maintenance of the two-fold charge are observed, which lead to a condensation of the C(m)H(n)(2+) dications with neutral benzene under formation of intermediate C(m+6)H(n+6)(2+) species and then undergo subsequent losses of molecular hydrogen or neutral acetylene. This reaction complements a recently proposed dicationic route for the formation of polycyclic aromatic hydrocarbons under extreme conditions such as they exist in interstellar environments.  相似文献   

12.
The reaction mechanism, thermodynamic and kinetic properties for diazotization and nitration of 3,5‐diamino‐1,2,4‐triazole were studied by a density functional theory. The geometries of the reactants, transition states, and intermediates were optimized at the B3LYP/6‐31G (d, p) level. Vibrational analysis was carried out to confirm the transition state structures, and the intrinsic reaction coordinate (IRC) method was used to explore the minimum energy path. The single‐point energies of all stagnation points were further calculated at the B3LYP (MP2)/6‐311+G (2d, p) level. The statistical thermodynamic method and Eyring transition state theory with Wigner correction were used to study the thermodynamic and kinetic characters of all reactions within 0–25°C. Two reaction channels are computed, including the diazotization and nitration of 3‐NH2 or 5‐NH2, and there are six steps in each channel. The reaction rate in each step is increased with temperature. The last step in each channel is the slowest step. The first, second, and fifth steps are exothermic reactions, and are favored at lower temperature in the thermodynamics. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

13.
The equilibria and kinetics (stopped-flow) of the binding of Ni(II) to salicylhydroxamic acid (SHA) and phenylbenzohydroxamic acid (PBHA) have been investigated in aqueous solutions containing SDS micelles. The two ligands are fairly distributed between the two pseudophases present, so the binding reaction occurs in both phases. The contributions to the total reaction from each phase has been evaluated, following a procedure where use is made of the experimentally determined partition coefficients of the reactants involved. The mechanism of the reaction occurring on the micelle surface has been derived and comparison with the mechanism in water shows that the step Ni(2+) + HL ? NiHL(2+) is operative in both pseudophases, whereas the step Ni(2+) + L(-)? NiL(+), which is operative in water, is replaced in SDS by the step NiOH(+) + HL ? NiL(+). The analysis of the equilibrium and of the kinetic data enabled the evaluation of the equilibrium and the rate constants of the individual steps taking part in the binding process over the micelle surface. Interestingly, the first hydrolysis constant of the Ni(H(2)O)(6)(2+) ion in SDS is more than two orders of magnitude higher than in water. The agreement between the equilibrium constants derived from kinetics and those obtained by static measurements confirms the validity of the proposed mechanism.  相似文献   

14.
Metal(III)-polypyridine complexes [M(NN)(3)](3+) (M = Ru or Fe; NN = bipyridine (bpy), phenanthroline (phen), or 4,7-dimethylphenanthroline (Me(2)-phen)) oxidize the nitrosylpentaaquachromium(III) ion, [Cr(aq)NO](2+), with an overall 4:1 stoichiometry, 4 [Ru(bpy)(3)](3+) + [Cr(aq)NO](2+) + 2 H(2)O --> 4 [Ru(bpy)(3)](2+) + [Cr(aq)](3+) + NO(3)(-) + 4 H(+). The kinetics follow a mixed second-order rate law, -d[[M(NN)(3)](3+)]/dt = nk[[M(NN)(3)](3+)][[Cr(aq)NO](2+)], in which k represents the rate constant for the initial one-electron transfer step, and n = 2-4 depending on reaction conditions and relative rates of the first and subsequent steps. With [Cr(aq)NO](2+) in excess, the values of nk are 283 M(-1) s(-1) ([Ru(bpy)(3)](3+)), 7.4 ([Ru(Me(2)-phen)(3)](3+)), and 5.8 ([Fe(phen)(3)](3+)). In the proposed mechanism, the one-electron oxidation of [Cr(aq)NO](2+) releases NO, which is further oxidized to nitrite, k = 1.04x10(6) M(-1) s(-1), 6.17x10(4), and 1.12x10(4) with the three respective oxidants. Further oxidation yields the observed nitrate. The kinetics of the first step show a strong correlation with thermodynamic driving force. Parallels were drawn with oxidative homolysis of a superoxochromium(III) ion, [Cr(aq)OO](2+), to gain insight into relative oxidizability of coordinated NO and O(2), and to address the question of the "oxidation state" of coordinated NO in [Cr(aq)NO](2+).  相似文献   

15.
Aqueous chromium(II) ions reduce a macrocyclic Rh(III) complex L(1)(H(2)O)(2)Rh(3+) (L(1) = 1,4,8,11-tetraazacyclotetradecane) to the hydride L(1)(H(2)O)RhH(2+) in two discrete, one-electron steps. The first step generates L(1)(H(2)O)Rh(2+) with kinetics that are first order in each rhodium(III) complex and Cr(H(2)O)(6)(2+), and inverse in [H(+)], k/M(-1) s(-1) = 0.065/(0.0031 + [H(+)]). Further reduction of L(1)(H(2)O)Rh(2+) to L(1)(H(2)O)RhH(2+) is kinetically independent of [H(+)], k/M(-1) s(-1) = 0.30. The difference in [H(+)] dependence allows relative rates of the two steps to be manipulated to generate either L(1)(H(2)O)Rh(2+) or L(1)(H(2)O)RhH(2+) as the final product.  相似文献   

16.
Density functional theory (DFT) at the hybrid B3LYP level has been applied to Ge(12)(z) bare germanium clusters (z = -6, -4, -2, 0, +2, +4, +6) starting from 11 initial configurations. The Wade-Mingos rules are seen to have limited value in rationalizing the results since they frequently require vertex degrees higher than the optimum vertex degree of 4 for germanium. Thus the expected I(h) regular icosahedron is no longer the global minimum for Ge(12)(2-) although it remains a low energy structure for Ge(12)(2-) lying only 5.6 kcal mol(-1) above a bicapped arachno structure conforming to the Wade-Mingos rules. The three lowest energy structures for Ge(12)(4-) within 11 kcal mol(-1) are a prolate (elongated) polyhedron with six quadrilateral faces and eight triangular faces, the dual of the bisdisphenoid with four trapezoidal and four pentagonal faces, and a polyhedron with two quadrilateral and 16 triangular faces related but not identical to the polyhedron found in the known tetracarbon carboranes R(4)C(4)B(8)H(8). The lowest energy structures for the neutral Ge(12) are seen to be distorted versions of the icosahedron and the bicapped 10-vertex arachno lowest energy structures for Ge(12)(2-). The low energy structures for the even more hypoelectronic Ge(12)(2+) and Ge(12)(4+) are even more unusual including a hexacapped octahedron, a tetracapped square antiprism, and a double cube for Ge(12)(2+) and a C(2v) structure with a central unique degree 6 vertex for Ge(12)(4+).  相似文献   

17.
The structures and stabilities of gitonic and distonic alkanonium dications, i.e., diprotonated alkane dications C(n)H(2n+4)(2+) (n = 1-4), were investigated at the MP4(SDTQ)/6-311G**//MP2/6-31G** level. The global minimum energy structures (2, 4, 7, and 10) of the C(n)H(2n+4)(2+) dications are double C--H protonated alkanes to give structures with two two electron three-center (2e-3c) bonds. Two different dissociation pathways for the dications, viz deprotonation and demethylation, were also computed. Demethylation was found to be the favorable mode of dissociation.  相似文献   

18.
Formation kinetics of the metal-metal bonded binuclear [(CN)(5)Pt-Tl(CN)](-) (1) and the trinuclear [(CN)(5)Pt-Tl-Pt(CN)(5)](3-) (2) complexes is studied, using the standard mix-and-measure spectrophotometric method. The overall reactions are Pt(CN)(4)(2-) + Tl(CN)(2)(+) <==> 1 and Pt(CN)(4)(2-) + [(CN)(5)Pt-Tl(CN)](-) <==> 2. The corresponding expressions for the pseudo-first-order rate constants are k(obs) = (k(1)[Tl(CN)(2)(+)] + k(-1))[Tl(CN)(2)(+)] (at Tl(CN)(2)(+) excess) and k(obs) = (k(2b)[Pt(CN)(4)(2-)] + k(-2b))[HCN] (at Pt(CN)(4)(2-) excess), and the computed parameters are k(1) = 1.04 +/- 0.02 M(-2) s(-1), k(-1) = k(1)/K(1) = 7 x 10(-5) M(-1) s(-1) and k(2b) = 0.45 +/- 0.04 M(-2) s(-1), K(2b) = 26 +/- 6 M(-1), k(-2b) = k(2b)/K(2b) = 0.017 M(-1) s(-1), respectively. Detailed kinetic models are proposed to rationalize the rate laws. Two important steps need to occur during the complex formation in both cases: (i) metal-metal bond formation and (ii) the coordination of the fifth cyanide to the platinum site in a nucleophilic addition. The main difference in the formation kinetics of the complexes is the nature of the cyanide donor in step ii. In the formation of [(CN)(5)Pt-Tl(CN)](-), Tl(CN)(2)(+) is the source of the cyanide ligand, while HCN is the cyanide donating agent in the formation of the trinuclear species. The combination of the results with previous data predict the following reactivity order for the nucleophilic agents: CN(-) > Tl(CN)(2)(+) > HCN.  相似文献   

19.

The catalytic autoxidation of hydrogensulfite (hydrogentrioxosulfate(1-)) in the presence of Co(tim)(H 2 O) 2 2+ (tim=2,3,9,10-tetramethyl-1,4,8,11-tetraazacyclotetradeca-1,3,8,10-tetraene) was studied. Dioxygen reacts with excess sulfite in the presence of Co(tim)(H 2 O) 2 2+ in a complex process (a minimum of five kinetic steps can be identified) to produce Co(tim)(SO 3 ) x (3 m 2 x )+ ( x =1 or 2) ( u max at 350 nm) and sulfate. Seventy turnovers over 4 h were attained in a system where dioxygen and sulfite were supplied constantly. The Co(III) product formed reacts only slowly with dioxygen to produce sulfate. A mechanistic analysis of the results implies the involvement of a Co(tim)-dioxygen adduct, stabilized by an axial sulfite ligand.  相似文献   

20.
Some chiral lanthanide complexes of the Schiff base adducts of: a) bis(2-pyridylcarboxaldehyde) and (1R),(2R)-trans-1,2-diaminocyclohexane (Pyr-R,R'-chxn: 3); b) 6-methyl-2-pyridylcarboxaldehyde and (1R),(2R)-trans 1,2-diaminocyclohexane (MePyr-chxn, 4); and c) 2,6-pyridyldicarboxaldehyde and (1R),(2R)-trans-1,2-diaminocyclohexane ((Pyr-R,R'-chxn)(2), 5) have been screened for their utility to promote kinetic resolution via metal catalyzed alcoholyses of the p-nitrophenyl esters of chiral D- and L-Boc-protected glutamine and phenylalanine. Solvents were varied to optimize the kinetic selectivity values, defined as k(2)(L)/k(2)(D) or k(2)(D)/k(2)(L), for the methanolysis and in some cases, ethanolysis of these substrates. At ambient temperature the greatest selectivity was found for the ethanolysis of Boc-Gln-OPNP, catalyzed by 3:Yb(3+):((-)OEt) (k(2)(L)/k(2)(D) = 7.2). The greatest selectivity for Boc-Phe-OPNP is k(2)(D)/k(2)(L) = 3.9 for its methanolysis promoted by 5:La(3+):((-)OMe). A kinetic method is introduced for the determination of both d and l rate constants for catalyzed alcoholysis from a single kinetic experiment. The activation parameters DeltaH(double dagger) and DeltaS(double dagger) were determined for the metal catalyzed methanolysis and ethanolysis of the Boc-Gln-OPNP substrates, and selectivity factors were found to increase at lower temperatures. A low temperature time course for the ethanolysis of racemic Boc-Gln-OPNP catalyzed by 3:Yb(3+):((-)OEt) at -15 degrees C indicated that after 3 hours 60% residual d-enantiomer was observed having an enantiomeric excess of >95% ee. The activation parameters for the ethanolysis of the same substrate catalyzed by (Pyr-R,R'-chxn)(2):La(3+):((-)OEt) predict a k(2)(D)/k(2)(L) = 40.4 at -40 degrees C with a large ee of >99% with approximately 80% of l isomer remaining at that temperature which has been experimentally confirmed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号