首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The addition of extravalence, polarization and diffuse functions, were studied in order to conclude how they affect the P? O stretching frequencies of several biological relevant phosphate molecules. The results show that the polarization and the diffuse functions have opposite effects on the frequencies: the polarization functions downshift while the diffuse functions upshift the frequencies. The effect of the valence functions was more difficult to interpret. The effect of the conductor‐like screening model (CPCM)‐continuum model was also studied. The results show that the CPCM‐continuum model has a substantial effect on the frequencies for these small molecules. The continuum model's efficiency is mainly due to its effect on the geometries and not on the frequencies. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

2.
We present an extensive investigation of the dependence of the scattering intensity difference of right and left circularly polarized light observed in vibrational Raman optical activity (VROA) on the choice of basis set and exchange-correlation functional. These dependencies are investigated for five molecules for which accurate experimental data are available: (S)-methyloxirane, (R)-epichlorhydrin, (S)-glycidol, (M)-spiro[2,2]pentane-1,4-diene, and (M)-sigma-[4]-helicene. Calculations are presented using the SVWN exchange-correlation functional (LDA), the BLYP exchange-correlation functional, and the B3LYP hybrid functional, using six different basis sets: the cc-pVDZ, cc-pVTZ, aug-cc-pVDZ, aug-cc-pVTZ, Sadlej's polarized basis set, and a minimal VROA basis set recently proposed by Zuber and Hug. It is demonstrated that results from pure gradient-corrected and hybrid functionals are comparable and that the aug-cc-pVDZ and aug-cc-pVTZ basis sets yield similar results. Furthermore, the combination of the small basis set by Zuber and Hug with an accurate force field represents the best compromise between computational accuracy and computational efficiency.  相似文献   

3.
A special feature of the Strutinsky shell correction method (SCM) [D. Ullmo et al., Phys. Rev. B 63, 125339 (2001)] and the recently proposed orbital-corrected orbital-free density functional theory (OO-DFT) [B. Zhou and Y. A. Wang, J. Chem. Phys. 124, 081107 (2006)] is that the second-order corrections are incorporated in the total energy evaluation. In the SCM, the series expansion of the total electronic energy is essentially the Harris functional with its second-order correction. Unfortunately, a serious technical problem for the SCM is the lack of the exact Kohn-Sham (KS) density rho KS(r) required for the evaluation of the second-order correction. To overcome this obstacle, we design a scheme that utilizes the optimal density from a high-quality density mixing scheme to approximate rho KS(r). Recently, we proposed two total energy density functionals, i.e., the Zhou-Wang-lambda (ZW lambda) and the Wang-Zhou-alpha (WZ alpha) functionals, for use in the OO-DFT method. If the two interpolation parameters, lambda and alpha, are chosen to allow the second-order errors of the ZW lambda and the WZ alpha functionals to vanish, these two functionals reduce to the Hohenberg-Kohn-Sham functional with its second-order correction. Again, the optimal density from a high-quality density mixing scheme is used to approximate rho KS(r) in the evaluation of lambda and alpha. This approach is tested in iterative KS-DFT calculations on systems with different chemical environments and can also be generalized for use in other iterative first-principles quantum chemistry methods.  相似文献   

4.
It is shown that the convergence of anharmonic infrared spectral intensities with respect to the basis set size is much enhanced in explicitly correlated calculations as compared to traditional configuration interaction type wave function expansion. Explicitly correlated coupled cluster (CC) calculations using Slater-type geminal correlation factor (CC-F12) yield well-converged dipole derivatives and vibrational intensities for hydrogen fluoride with basis set involving f functions on the heavy atom. Combination of CC-F12 with singles, doubles, and non-iterative triples (CCSD(T)-F12) with small corrections due to quadruple excitations, core-electron correlation, and relativistic effects yields vibrational line positions, dipole moments, and transition dipole matrix elements in good agreement with the best experimental values.  相似文献   

5.
A valence-type anion of the canonical tautomer of uracil has been characterized using explicitly correlated second-order Moller-Plesset perturbation theory (RI-MP2-R12) in conjunction with conventional coupled-cluster theory with single, double, and perturbative triple excitations. At this level of electron-correlation treatment and after inclusion of a zero-point vibrational energy correction, determined in the harmonic approximation at the RI-MP2 level of theory, the valence anion is adiabatically stable with respect to the neutral molecule by 40 meV. The anion is characterized by a vertical detachment energy of 0.60 eV. To obtain accurate estimates of the vertical and adiabatic electron binding energies, a scheme was applied in which electronic energy contributions from various levels of theory were added, each of them extrapolated to the corresponding basis-set limit. The MP2 basis-set limits were also evaluated using an explicitly correlated approach, and the results of these calculations are in agreement with the extrapolated values. A remarkable feature of the valence anionic state is that the adiabatic electron binding energy is positive but smaller than the adiabatic electron binding energy of the dipole-bound state.  相似文献   

6.
Large expansions in basis sets of explicitly correlated Gaussian functions and the variation-perturbation technique were used to calculate the static dipole polarizability of the helium dimer at 16 different internuclear separations from 1.0 to 9.0 bohrs. The convergence towards the complete basis set limit was analyzed in order to estimate uncertainties of all the calculated values. The results are significantly more accurate than literature data. Asymptotically correct analytic fits for the trace and anisotropy of collision-induced polarizability were obtained.  相似文献   

7.
Explicitly correlated coupled-cluster theory has developed into a valuable computational tool for the calculation of electronic energies close to the limit of a complete basis set of atomic orbitals. In particular at the level of coupled-cluster theory with single and double excitations (CCSD), the space of double excitations is quickly extended towards a complete basis when Slater-type geminals are added to the wave function expansion. The purpose of the present article is to demonstrate the accuracy and efficiency that can be obtained in computational thermochemistry by a CCSD model that uses such Slater-type geminals. This model is denoted as CCSD(F12), where the acronym F12 highlights the fact that the Slater-type geminals are functions f(r 12) of the interelectronic distances r 12 in the system. The performance of explicitly correlated CCSD(F12) coupled-cluster theory is demonstrated by computing the atomization energies of 73 molecules (containing H, C, N, O, and F) with an estimated root-mean-square deviation from the values compiled in the Active Thermochemical Tables of σ = 0.10 kJ/mol per valence electron. To reach this accuracy, not only the frozen-core CCSD basis-set limit but also high-order excitations (connected triple and quadruple excitations), core–valence correlation effects, anharmonic vibrational zero-point energies, and scalar and spin–orbit relativistic effects must be taken into account.  相似文献   

8.
We describe the evaluation of response properties using multiresolution multiwavelet (MRMW) basis sets. The algorithm uses direct projection of the perturbed density operator onto the zeroth order density operator on the real space spanned by the MRMW basis set and is applied for evaluating the polarizability of small molecules using Hartree-Fock and Kohn-Sham density functional theory. The computed polarizabilities can be considered to be converged to effectively complete space within the requested precision. The efficiency of the method against the ordinary Gaussian basis computation is discussed.  相似文献   

9.
A new explicitly correlated local coupled-cluster method with single and double excitations and a perturbative treatment of triple excitations [DF-LCCSD(T0)-F12x (x = a,b)] is presented. By means of truncating the virtual orbital space to pair-specific local domains (domain approximation) and a simplified treatment of close, weak and distant pairs using LMP2-F12 (pair approximation) the scaling of the computational cost with molecular size is strongly reduced. The basis set incompleteness errors as well as the errors due to the domain approximation are largely eliminated by the explicitly correlated terms. All integrals are computed using efficient density fitting (DF) approximations. The accuracy of the method is investigated for 52 reactions involving medium size molecules. A comparison of DF-LCCSD(T0)-F12x reaction energies with canonical CCSD(T)-F12x calculations shows that the errors introduced by the domain approximation are indeed very small. Care must be taken to keep the errors due to the additional pair approximation equally small, and appropriate distance criteria are recommended. Using these parameters, the root mean square (RMS) deviations of DF-LCCSD(T0)-F12a calculations with triple-ζ basis sets from estimated CCSD(T) complete basis set (CBS) limits and experimental data amount to only 1.5 kJ mol(-1) and 2.9 kJ mol(-1), respectively. For comparison, the RMS deviation of the CCSD(T)/CBS values from the experimental values amounts to 3.0 kJ mol(-1). The potential of the method is demonstrated for five reactions of biochemical or pharmacological interest which include molecules with up to 61 atoms. These calculations show that molecules of this size can now be treated routinely and yield results that are close to the CCSD(T) complete basis set limits.  相似文献   

10.
We present a set of benchmark calculations for the Kohn-Sham elastic transmission function of five representative single-molecule junctions. The transmission functions are calculated using two different density functional theory methods, namely an ultrasoft pseudopotential plane-wave code in combination with maximally localized Wannier functions and the norm-conserving pseudopotential code SIESTA which applies an atomic orbital basis set. All calculations have been converged with respect to the supercell size and the number of k|| points in the surface plane. For all systems we find that the SIESTA transmission functions converge toward the plane-wave result as the SIESTA basis is enlarged. Overall, we find that an atomic basis with double zeta and polarization is sufficient (and in some cases, even necessary) to ensure quantitative agreement with the plane-wave calculation. We observe a systematic downshift of the SIESTA transmission functions relative to the plane-wave results. The effect diminishes as the atomic orbital basis is enlarged; however, the convergence can be rather slow.  相似文献   

11.
Explicitly correlated MBPT-R12 and coupled cluster [up to CCSD(T)-R12] methods have been used in calculations of various (vibrationless) electrical properties for the LiH molecule, including the dipole and quadrupole moments, dipole and quadrupole polarizability tensors, dipole hyperpolarizability tensors, and the second dipole hyperpolarizability tensors. Generally, with extension of the basis set the R12 method did not lead to faster convergence for the calculated properties towards the basis limit. Nevertheless, R12 calculations serve as useful indicators to judge the reliability of the results, and substantially help in determining the accuracy. Results obtained with the 11s8p6d5f/9s8p6d5f basis and CCSD(T)-R12 calculated within this work should be close to the basis set limit. Received: 8 June 1998 / Accepted: 23 July 1998 / Published online: 7 October 1998  相似文献   

12.
Explicitly correlated second-order M?ller-Plesset (MP2-F12) calculations of intermolecular interaction energies for the S22 benchmark set of Jurecka, Sponer, Cerny, and Hobza (Chem. Phys. Phys. Chem. 2006, 8, 1985) are presented and compared with standard MP2 results. The MP2 complete basis set limits are estimated using basis set extrapolation and augmented quadruple-zeta and quintuple-zeta basis sets. Already with augmented double-zeta basis sets the MP2-F12 interaction energies are found to be closer to the complete basis set limits than standard MP2 calculations with augmented quintuple-zeta basis sets. Various possible approximations in the MP2-F12 method are systematically tested. Best results are obtained with localized orbitals and the diagonal MP2-F12/C(D) ansatz. Hybrid approximations, in which some contributions of the auxiliary basis set are neglected and which considerably reduce the computational cost, have a negligible effect on the interaction energies. Also the orbital-invariant fixed-amplitude approximation of Ten-no leads to only slightly less accurate results. Preliminary results for the neon and benzene dimers, obtained with the recently proposed CCSD(T)-F12a approximation, indicate that the CCSD(T) basis set limits can also be very closely approached using augmented triple-zeta basis sets.  相似文献   

13.
14.
The energetics and the electronic and magnetic properties of iridium nanoparticles in the range of 2-64 atoms were investigated using density functional theory calculations. A variety of different geometric configurations were studied, including planar, three-dimensional, nanowire, and single-walled nanotube. The binding energy per atom increases with size and dimensionality from 2.53 eV/atom for the iridium dimer to 6.09 eV/atom for the 64-atom cluster. The most stable geometry is planar until four atoms are reached and three-dimensional thereafter. The simple cubic structure is the most stable geometric building block until a strikingly large 48-atom cluster, when the most stable geometry transitions to face-centered cubic, as found in the bulk metal. The strong preference for cubic structure among small clusters demonstrates their rigidity. This result indicates that iridium nanoparticles intrinsically do not favor the coalescence process. Nanowires formed from linear atomic chains of up to 4-atom rings were studied, and the wires formed from 4-atom rings were extremely stable. Single-walled nanotubes were also studied. These nanotubes were formed by stacking 5- and 6-atom rings to form a tube. The ring stacking with each atom directly above the previous atom is more stable than if the alternate rings are rotated.  相似文献   

15.
The purpose of this overview is to highlight the broad scope and utility of current applications of density functional theory (DFT) methods for the study of the properties and reactions of biomolecules. This is illustrated using examples selected from research carried out within our research group and in collaboration with others. The examples include the hyperfine coupling constants of amino acid radicals, the use of an amino acid as a chiral catalyst for the formation of carbon–carbon bonds in the aldol reaction, hydrogen-bond mediated catalysis of an aminolysis reaction, radiation-induced protein–DNA cross-links, and the mechanism by which an antitumor drug cleaves DNA. We demonstrate that DFT-based methods can be applied successfully to a broad range of problems that remain beyond the scope of conventional electron-correlation methods. Furthermore, we show that contemporary computational quantum chemistry complements experiment in the study of biological systems. Received: 19 December 2001 / Accepted: 8 April 2002 / Published online: 4 July 2002  相似文献   

16.
We discuss possibilities and challenges for describing correlated electron and nuclear dynamics within a surface-hopping framework using time-dependent density functional theory (TDDFT) for the electron dynamics. We discuss the recent surface-hopping method proposed by Craig et al. [Phys. Rev. Lett. 95, 163001 (2005)] that is based on Kohn-Sham potential energy surfaces. Limitations of this approach arise due to the Kohn-Sham surfaces generally having different gradients than the true TDDFT-corrected ones. Two mechanisms of the linear response procedure cause this effect: we illustrate these with examples.  相似文献   

17.
Deoxyribonucleic acid (DNA) methylation is an epigenetic phenomenon, which adds methyl groups into DNA. This study reveals methylation of a nucleoside antibiotic drug 1‐(β‐D ‐ribofuranosyl)‐2‐pyrimidinone (zebularine or zeb) with respect to its methylated analog, 1‐(β‐D ‐ribofuranosyl)‐5‐methyl‐2‐pyrimidinone (d5) using density functional theory calculations in valence electronic space. Very similar infrared spectra suggest that zeb and d5 do not differ by types of the chemical bonds, but distinctly different Raman spectra of the nucleoside pair reveal that the impact caused by methylation of zeb can be significant. Further valence orbital‐based information details on valence electronic structural changes caused by methylation of zebularine. Frontier orbitals in momentum space and position space of the molecules respond differently to methylation. Based on the additional methyl electron density concentration in d5, orbitals affected by the methyl moiety are classified into primary and secondary contributors. Primary methyl contributions include MO8 (57a), MO18 (47a), and MO37 (28a) of d5, which concentrates on methyl and the base moieties, suggest certain connection to their Frontier orbitals. The primary and secondary methyl affected orbitals provide useful information on chemical bonding mechanism of the methylation in zebularine. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   

18.
We present a time-dependent density functional theory (TD-DFT) benchmarking of recently constructed basis set, namely exc-ETDZ (Guevara et al. in J Chem Phys 131: 064104, 2009) for predicting the atomic spectra of the first-row atoms. A systematic testing with 31 density functional methods has been performed to see whether convincing performance of this basis set carries over the TD-DFT formalism. The efficiency of exc-ETDZ basis set for reproducing atomic spectra has been compared with Pople- and Dunning-style basis sets. We focused on the atomic low-lying valence excited states with single excitation character for our benchmarking, and the calculated excitation energies were compared to experimental data. On average, the functionals providing the best match with exc-ETDZ basis are BMK, BH&HLYP and ωB97. Moreover, on the basis of comparison between the results of these superior functionals with CIS(D) estimates, it turned out that TD-DFT and CIS(D) errors are of the same order of magnitude, once the exc-ETDZ basis set is used. Finally, the results of present study indicate that different functionals show results that are highly dependent on the atomic configuration as well as the basis set.  相似文献   

19.
The recently proposed new family of "double-hybrid" density functionals [Grimme, S. J. Chem. Phys. 2006, 124, 34108] replaces a fraction of the semi-local correlation energy by a non-local correlation energy expression that employs the Kohn-Sham orbitals in second-order many-body perturbation theory. These functionals have provided results of high accuracy over a wide range of properties but fail to accurately describe long-range van der Waals interactions. In this work, a distance-dependent scaling factor for the non-local correlation energy is introduced to address this problem, and two new double-hybrid density functionals are proposed. The new functionals are optimized with the finite cc-pVTZ basis on training sets of atomization energies and intermolecular interaction energies. They are compared against (scaled) second-order M?ller-Plesset perturbation theories and popular density functionals including the hybrid-GGA functional B3-LYP and the first double-hybrid functional (B2-PLYP). Tests are performed on an extensive set including reaction energies, barrier heights, weakly interacting complexes, transition-metal systems, molecular geometries, and harmonic vibrational frequencies. Within the cc-pVTZ atomic orbital basis, we have demonstrated the ability to find a parametrization scheme which is simultaneously able to describe thermochemistry and weakly bound systems with a satisfactory degree of accuracy.  相似文献   

20.
The structural, energetic, and electronic properties of the Li/graphite system are studied through density functional theory (DFT) calculations using both the local spin density approximation (LSDA), and the gradient-corrected Perdew-Burke-Ernzerhof (PBE) approximation to the exchange-correlation energy. The calculations were performed using plane waves basis, and the electron-core interactions are described using pseudopotentials. We consider a disperse phase of the adsorbate comprising one Li atom for each 16 graphite surface cells, in a slab geometry. The close contact between the Li nucleus and the graphene plane results in a relatively large binding energy (larger than 1.1 eV). A detailed analysis of the electronic charge distribution, density difference distribution, and band structures indicates that one valence electron is entirely transferred from the atom to the surface, which gives rise to a strong interaction between the resulting lithium ion and the cloud of pi electrons in the substrate. We show that it is possible to explain the differences in the binding of Li, Na, and K adatoms on graphite considering the properties of the corresponding cation/aromatic complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号