首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Raman spectroscopy of selected lead minerals of environmental significance   总被引:2,自引:0,他引:2  
The Raman spectra of the minerals cerrusite (PbCO(3)), hydrocerrusite (Pb(2)(OH)(2)CO(3)), phosgenite (Pb(2)CO(3)Cl(2)) and laurionite (Pb(OH)Cl) have been used to qualitatively determine their presence. Laurionite and hydrocerrusite have characteristic hydroxyl stretching bands at 3506 and 3576 cm(-1). Laurionite is also characterised by broad low intensity bands centred at 730 and 595 cm(-1) attributed to hydroxyl deformation vibrations. The minerals cerrusite, hydrocerrusite and phosgenite have characteristic CO (nu(1)) symmetric stretching bands observed at 1061, 1054 and 1053 cm(-1). Phosgenite displays complexity in the CO (nu(3)) antisymmetric stretching region with bands observed at 1384, 1327 and 1304 cm(-1). Cerrusite shows bands at 1477, 1424, 1376 and 1360 cm(-1). The hydrocerrusite Raman spectrum has bands at slightly different positions from cerrusite, with bands at 1479, 1420, 1378 and 1365 cm(-1). The complexity of the nu(3) region is also reflected in the nu(2) and nu(4) regions with the observation of multiple bands. Laurionite is characterised by two intense bands at 328 and 272 cm(-1) attributed to PbO and PbCl stretching bands. Importantly, all four minerals are characterized by their Raman spectra, enabling the mineral identification in leachates and contaminants of environmental significance.  相似文献   

2.
In the present article, we report adsorption energies, structures, and vibrational frequencies of CO on Fe(100) for several adsorption states and at three surface coverages. We have performed a full analysis of the vibrational frequencies of CO, thus determining what structures are stable adsorption states and characterizing the transition-state structure for CO dissociation. We have calculated the activation energy of dissociation of CO at 0.25 ML (ML = monolayers) as well as at 0.5 ML; we have studied the dissociation at 0.5 ML to quantify the destabilization effect on the CO(alpha3) molecules when a neighboring CO molecule dissociates. In addition, it is shown that the number and nature of likely adsorption states is coverage dependent. Evidence is presented that shows that the CO molecule adsorbs on Fe(100) at fourfold hollow sites with the molecular axis tilted away from the surface normal by 51.0 degrees. The asorprton energy of the CO molecule is -2.54 eV and the C-O stretching frequency is 1156 cm(-1). This adsorption state corresponds to the alpha3 molecular desorption state reported in temperature programmed desorption (TPD) experiments. However, the activation energy of dissociation of CO(alpha3) molecules at 0.25 ML is only 1.11 eV (approximately 25.60 kcal mol(-1)) and the gain in energy is -1.17 eV; thus, the dissociation of CO is largely favored at low coverages. The activation energy of dissociation of CO at 0.5 ML is 1.18 eV (approximately 27.21 kcal mol(-1)), very similar to that calculated at 0.25 ML. However, the dissociation reaction at 0.5 ML is slightly endothermic, with a total change in energy of 0.10 eV Consequently, molecular adsorption is stabilized with respect to CO dissociation when the CO coverage is increased from 0.25 to 0.5 ML.  相似文献   

3.
The adsorption of carbon monoxide on Rh(111) and on oxygen modified Rh(111) was investigated using thermal desorption spectroscopy, reflection absorption infrared spectroscopy (RAIRS), and density functional theory. The results show that CO adsorbs on Rh(111) in on top sites at low coverages. With increasing coverage hollow sites and bridge sites get occupied according to the RAIRS results. A new vibrational feature at high wave numbers was found in the on top region of the CO stretching frequency. This feature can be explained by a local high density CO structure where two CO molecules are adsorbed in the ( radical3x radical3)R30 degrees structure. The coadsorption of oxygen and carbon monoxide leads to a shift of the CO stretching frequency to higher wave numbers with increasing O to CO ratio. CO adsorption on a (2x1) oxygen layer is possible and RAIRS shows that the CO adsorbs in on top and most likely in bridge sites in this case.  相似文献   

4.
The HXeCCH...CO2 complex is studied experimentally and computationally. The complex is prepared in a low-temperature xenon matrix using UV photolysis of propiolic acid (HCCCOOH) and thermal mobilization of H atoms at 45 K. Photolysis of propiolic acid leads to the HCCH...CO2 complex as one of the photolysis products. The HCCH...CO2 complex is further photolyzed to the HCC...CO2 complex. Thermal annealing leads to the formation of HXeCCH complexed with CO2. The H-Xe stretching absorption of the HXeCCH...CO2 complex is blueshifted (+31.9 and +5.8 cm(-1)) from the value of the HXeCCH monomer in a xenon matrix. In the calculations, three HXeCCH...CO2 structures were found (one parallel and two linear structures) corresponding to the true energy minima on the potential energy surface. For the H-Xe stretching mode, the calculations give blueshifted values of +19.2 or +19.5 cm(-1) depending on the computational level [MP2/6-311++G(2d,2p) and MP2/aug-cc-pVDZ] for the parallel structure and +19.4 or +27.9 cm(-1) for one linear structure. For the second linear structure, the H-Xe stretching frequency is redshifted by -8.6 or -9.4 cm(-1) at these levels of theory. Based on the calculations, the experimental band shifted by +5.8 cm(-1) (1492.2 cm(-1)) most likely corresponds to the HXeCCH...CO2 parallel structure. The band with larger blueshift of +31.9 cm(-1) (1518.3 cm(-1)) can be due to another matrix site of the same structure or to the blueshifting linear structure.  相似文献   

5.
The adsorption of CO(2) over a set of gallium (III) oxide polymorphs with different crystallographic phases (alpha, beta, and gamma) and surface areas (12-105 m(2) g(-1)) was studied by in situ infrared spectroscopy. On the bare surface of the activated gallias (i.e., partially dehydroxylated under O(2) and D(2) (H(2)) at 723 K), several IR signals of the O-D (O-H) stretching mode were assigned to mono-, di- and tricoordinated OD (OH) groups bonded to gallium cations in tetrahedral and/or octahedral positions. After exposing the surface of the polymorphs to CO(2) at 323 K, a variety of (bi)carbonate species emerged. The more basic hydroxyl groups were able to react with CO(2), to yield two types of bicarbonate species: mono- (m-) and bidentate (b-) [nu(as)(CO(3)) = 1630 cm(-1); nu(s)(CO(3)) = 1431 or 1455 cm(-1) (for m- or b-); delta(OH) = 1225 cm(-1)]. Together with the bicarbonate groups, IR bands assigned to carboxylate [nu(as)(CO(2)) = 1750 cm(-1); nu(s)(CO(2)) = 1170 cm(-1)], bridge carbonate [nu(as)(CO(3)) = 1680 cm(-1); nu(s)(CO(3)) = 1280 cm(-1)], bidentate carbonate [nu(as)(CO(3)) = 1587 cm(-1); nu(s)(CO(3)) = 1325 cm(-1)], and polydentate carbonate [nu(as)(CO(3)) = 1460 cm(-1); nu(s)(CO(3)) = 1406 cm(-1)] species developed, up to approximately 600 Torr of CO(2). However, only the bi- and polydentate carbonate groups still remained on the surface upon outgassing the samples at 323 K. The total amount of adsorbed CO(2), measured by volumetric adsorption (323 K), was approximately 2.0 micromol m(-2) over any of the polymorphs, congruent with an integrated absorbance of (bi)carbonate species proportional to the surface area of the materials. Upon heating under flowing CO(2) (760 Torr), most of the (bi)carbonate species vanished a T > 550 K, but polydentate groups remained on the surface up to the highest temperature used (723 K). A thorough discussion of the more probable surface sites involved in the adsorption of CO(2) is made.  相似文献   

6.
We have carried out first principles plane wave density-functional theory calculations to study the adsorption of CO molecule on a clean and unreconstructed Cu (110) surface at 1/12 monolayer coverage and have investigated the subsequent oxidation by preadsorbed oxygen atoms. As found experimentally, the CO adsorbs perpendicular to the surface plane through the carbon atom; the top site was found to be the most favorable position for CO adsorption although the short-bridge site is only slightly less stable. Surprisingly, for a sparely oxidized surface with O atoms adsorbed in hollow sites the coadsorption energy is slightly negative for only the above two CO sites which have therefore been used as starting points to explore the energy surface of the oxidation reaction. We have confirmed the existence of bent CO(2) surface intermediate as previously suggested from experimental studies. Using the nudged elastic band method, we have characterized a two step reaction which involves the formation of this intermediate. The results suggest that the rate determining step of the oxidation reaction is the formation of the intermediate and the energy barrier (200 meV) is close to although smaller than experimentally estimated values.  相似文献   

7.
We present theoretical and experimental evidence for CO(2) adsorption on different sites of single walled carbon nanotube (SWNT) bundles. We use local density approximation density functional theory (LDA-DFT) calculations to compute the adsorption energies and vibrational frequencies for CO(2) adsorbed on SWNT bundles. The LDA-DFT calculations give a range of shifts for the asymmetric stretching mode from about -6 to -20 cm(-1) for internally bound CO(2), and a range from -4 to -16 cm(-1) for externally bound CO(2) at low densities. The magnitude of the shift is larger for CO(2) adsorbed parallel to the SWNT surface; various perpendicular configurations yield much smaller theoretical shifts. The asymmetric stretching mode for CO(2) adsorbed in groove sites and interstitial sites exhibits calculated shifts of -22.2 and -23.8 cm(-1), respectively. The calculations show that vibrational mode softening is due to three effects: (1) dynamic image charges in the nanotube; (2) the confining effect of the adsorption potential; (3) dynamic dipole coupling with other adsorbate molecules. Infrared measurements indicate that two families of CO(2) adsorption sites are present. One family, exhibiting a shift of about -20 cm(-1) is assigned to internally bound CO(2) molecules in a parallel configuration. This type of CO(2) is readily displaced by Xe, a test for densely populated adsorbed species, which are expected to be present on the highest adsorption energy sites in the interior of the nanotubes. The second family exhibits a shift of about -7 cm(-1) and the site location and configuration for these species is ambiguous, based on comparison with the theoretical shifts. The population of the internally bound CO(2) may be enhanced by established etching procedures that open the entry ports for adsorption, namely, ozone oxidation followed by annealing in vacuum at 873 K. Xenon displacement experiments indicate that internally bound CO(2) is preferentially displaced relative to the -7 cm(-1) shifted species. The -7 cm(-1) shifted species is assigned to CO(2) adsorbed on the external surface based on results from etching and Xe displacement experiments.  相似文献   

8.
Autoclaving was used to manipulate nutrient utilization and availability. The objectives of this study were to characterize any changes of the functional groups mainly associated with lipid structure in flaxseed (Linum usitatissimum, cv. Vimy), that occurred on a molecular level during the treatment process using infrared Fourier transform molecular spectroscopy. The parameters included lipid CH(3) asymmetric (ca. 2959 cm(-1)), CH(2) asymmetric (ca. 2928 cm(-1)), CH(3) symmetric (ca. 2871 cm(-1)) and CH(2) symmetric (ca. 2954 cm(-1)) functional groups, lipid carbonyl CO ester group (ca. 1745 cm(-1)), lipid unsaturation group (CH attached to CC) (ca. 3010 cm(-1)) as well as their ratios. Hierarchical cluster analysis (CLA) and principal components analysis (PCA) were conducted to identify molecular spectral differences. Flaxseed samples were kept raw for the control or autoclaved in batches at 120°C for 20, 40 or 60 min for treatments 1, 2 and 3, respectively. Molecular spectral analysis of lipid functional group ratios showed a significant decrease (P<0.05) in the CH(2) asymmetric to CH(3) asymmetric stretching band peak intensity ratios for the flaxseed. There were linear and quadratic effects (P<0.05) of the treatment time from 0, 20, 40 and 60 min on the ratios of the CH(2) asymmetric to CH(3) asymmetric stretching vibration intensity. Autoclaving had no significant effect (P>0.05) on lipid carbonyl CO ester group and lipid unsaturation group (CH attached to CC) (with average spectral peak area intensities of 138.3 and 68.8 IR intensity units, respectively). Multivariate molecular spectral analyses, CLA and PCA, were unable to make distinctions between the different treatment original spectra at the CH(3) and CH(2) asymmetric and symmetric region (ca. 2988-2790 cm(-1)). The results indicated that autoclaving had an impact to the mid-infrared molecular spectrum of flaxseed to identify heat-induced changes in lipid conformation. A future study is needed to quantify the relationship between lipid molecular structure changes and functionality/availability.  相似文献   

9.
段园  陈明树  万惠霖 《物理化学学报》2018,34(12):1358-1365
采用高分辨电子能量损失谱(HREELS)、俄歇电子能谱(AES)和低能电子衍射(LEED)研究镍单晶表面氧物种及CO与O2的共吸附。实验结果表明,Ni(111)表面氧化后存在两种氧物种,位于54 meV能量损失峰的表面化学吸附氧物种和位于69 meV能量损失峰的表面氧化镍。首先,随着暴露氧量的增加,表面化学吸附氧物种的能量损失峰蓝移至58 meV;其次,通过真空退火及与CO相互作用考察,发现表面化学吸附氧物种较不稳定。在室温条件下,表面预吸附形成的表面化学吸附氧物种与CO共吸附,导致端位吸附CO增多,表明氧优先吸附在穴位上,随着CO暴露量的增加化学吸附氧物种与CO反应脱去;而表面氧化镍需在较高温度和较高CO分压下才能被CO还原。预吸附CO可被氧逐渐移去。  相似文献   

10.
The adsorption and thermal decomposition of ketene on Si(l 11)-7 × 7 were investigated using various surface analysis techniques. When the surface was exposed to ketene at 120 K, two CO stretching modes at 220 and 273 meV appeared in HREELS, corresponding to two adsorbed ketene states. After the sample was annealed at ?250 K, the 273 and the 80 meV peaks vanished, indicating the disappearance of one of the adsorption states by partial desorption of the adsorbate. In a corresponding TPD measurement, a desorption peak for ketene species was noted at 220 K. Annealing the sample at 450 K caused the decomposition of the adsorbate, producing CHx and O adspecies. Further annealing of the surface at higher temperatures resulted in the breaking of the CH bond, the desorption of H and O species and the formation of Si carbide. The desorption of H at 800 K was confirmed by the appearance of the D2 (m/e = 4) TPD peak at that temperature when CD2CO was used instead of CH2CO.  相似文献   

11.
An understanding of the interaction between Zn(2)GeO(4) and the CO(2) molecule is vital for developing its role in the photocatalytic reduction of CO(2). In this study, we present the structure and energetics of CO(2) adsorbed onto the stoichiometric perfectly and the oxygen vacancy defect of Zn(2)GeO(4) (010) and (001) surfaces using density functional theory slab calculations. The major finding is that the surface structure of the Zn(2)GeO(4) is important for CO(2) adsorption and activation, i.e., the interaction of CO(2) with Zn(2)GeO(4) surfaces is structure-dependent. The ability of CO(2) adsorption on (001) is higher than that of CO(2) adsorption on (010). For the (010) surface, the active sites O(2c)···Ge(3c) and Ge(3c)-O(3c) interact with the CO(2) molecule leading to a bidentate carbonate species. The presence of Ge(3c)-O(2c)···Ge(3c) bonds on the (001) surface strengthens the interaction of CO(2) with the (001) surface, and results in a bridged carbonate-like species. Furthermore, a comparison of the calculated adsorption energies of CO(2) adsorption on perfect and defective Zn(2)GeO(4) (010) and (001) surfaces shows that CO(2) has the strongest adsorption near a surface oxygen vacancy site, with an adsorption energy -1.05 to -2.17 eV, stronger than adsorption of CO(2) on perfect Zn(2)GeO(4) surfaces (E(ads) = -0.91 to -1.12 eV) or adsorption of CO(2) on a surface oxygen defect site (E(ads) = -0.24 to -0.95 eV). Additionally, for the defective Zn(2)GeO(4) surfaces, the oxygen vacancies are the active sites. CO(2) that adsorbs directly at the Vo site can be dissociated into CO and O and the Vo defect can be healed by the oxygen atom released during the dissociation process. On further analysis of the dissociative adsorption mechanism of CO(2) on the surface oxygen defect site, we concluded that dissociative adsorption of CO(2) favors the stepwise dissociation mechanism and the dissociation process can be described as CO(2) + Vo → CO(2)(δ-)/Vo → CO(adsorbed) + O(surface). This result has an important implication for understanding the photoreduction of CO(2) by using Zn(2)GeO(4) nanoribbons.  相似文献   

12.
A step-scan Fourier-transform infrared spectrometer coupled with a multipass absorption cell was utilized to monitor the gaseous transient species benzoyl radical, C(6)H(5)CO. C(6)H(5)CO was produced either from photolysis of acetophenone, C(6)H(5)C(O)CH(3), at 248 nm or in reactions of phenyl radical (C(6)H(5)) with CO; C(6)H(5) was produced on photolysis of C(6)H(5)Br at 248 nm. One intense band at 1838 ± 1 cm(-1), one weak band at 1131 ± 3 cm(-1), and two extremely weak bands at 1438 ± 5 and 1590 ± 10 cm(-1) are assigned to the C═O stretching (ν(6)), the C-C stretching mixed with C-H deformation (ν(15)), the out-of-phase C(1)C(2)C(3)/C(5)C(6)C(1) symmetric stretching (ν(10)), and the in-phase C(1)C(2)C(3)/C(4)C(5)C(6) antisymmetric stretching (ν(7)) modes of C(6)H(5)CO, respectively. These observed vibrational wavenumbers and relative IR intensities agree with those reported for C(6)H(5)CO isolated in solid Ar and with values predicted for C(6)H(5)CO with the B3LYP/aug-cc-pVDZ method. The rotational contours of the two bands near 1838 and 1131 cm(-1) simulated according to rotational parameters predicted with the B3LYP/aug-cc-pVDZ method fit satisfactorily with the experimental results. Additional products BrCO, C(6)H(5)C(O)Br, and C(6)H(5)C(O)C(6)H(5) were identified in the C(6)H(5)Br/CO/N(2) experiments; the kinetics involving C(6)H(5)CO and C(6)H(5)C(O)Br are discussed.  相似文献   

13.
CO adsorption on four MoSx (stoichiometric and nonstoichiometric) clusters has been investigated by using density functional method. It is found that CO prefers adsorption on the coordinatively unsaturated (1010) surface. The adsorption energy of high coverage shows the additivity as compared with that of one CO adsorption, and there is no significant repulsive interaction between the end-on adsorbed CO probes. The computed CO stretching frequencies (2000-2080 cm(-1)) agree perfectly with the experimental data (a broad band centered at 2070 cm(-1) with a tail extent to 2000 cm(-1)). No bridged CO adsorption is favored energetically under high CO concentration, and this might explain the catalytic ability of MoSx for C1 products instead of higher hydrocarbons and alcohols.  相似文献   

14.
Irradiation of an Ar matrix sample containing O(3) and CS(2) with a KrF excimer laser at 248 nm yielded new lines at 1402.1 (1404.7), 1056.2 (1052.7), and 622.3 (620.5) cm(-1); numbers in parentheses correspond to species in a minor matrix site. Secondary photolysis at 308 nm diminished these lines and produced mainly OCS and SO(2). Annealing of this matrix to 30 K yielded a second set of new lines at 1824.7 and 617.8 cm(-1). The first set of lines are assigned to C=S stretching, O-S stretching, and S-C stretching modes of carbon disulfide S-oxide, OSCS; and the second set of lines are assigned to C=O stretching and OCS bending modes of dithiiranone, O(CS(2)), respectively, based on results of (34)S- and (18)O-isotopic experiments and quantum-chemical calculations. These calculations using density-functional theory (B3LYP/aug-cc-pVTZ) predict four stable isomers of OCS(2): O(CS(2)), SSCO, OSCS, and SOCS, listed in order of increasing energy. According to calculations, O(CS(2)) has a cyclic CS(2) moiety and is the most stable isomer of OCS(2). OSCS is planar, with bond angles angle OSC congruent with 111.9 degrees and angle SCS congruent with 177.3 degrees ; it is less stable than SSCO and O(CS(2)) by approximately 102 and 154 kJ mol(-1), respectively, and more stable than SOCS by approximately 26 kJ mol(-1). Calculated vibrational wave numbers, IR intensities, (34)S- and (18)O-isotopic shifts for OSCS and O(CS(2)) fit satisfactorily with experimental results.  相似文献   

15.
Adsorption of CO on Pt(100), Pt(410), and Pt(110) surfaces has been investigated by density functional theory (DFT) method (periodic DMol(3)) with full geometry optimization and without symmetry restriction. Adsorption energies, structures, and vibrational frequencies of CO on these surfaces are studied by considering multiple possible adsorption sites and comparing them with the experimental data. The same site preference as inferred experiments is obtained for all the surfaces. For Pt(100), CO adsorbs at the bridge site at low coverage, but the atop site becomes most favorable for the c(2 x 2) structure at 1/2 monolayer. For Pt(410) (stepped surface with (100) terrace and (110) step), CO adsorbs preferentially at the atop site on the step edge at 1/4 monolayer, but CO populates also at other atop and bridge sites on the (100) terrace at 1/2 monolayer. The multiple possible adsorption sites probably correspond to the multiple states in the temperature-programmed desorption spectra for CO desorption. For Pt(110), CO adsorbs preferentially at the atop site on the edge for both the reconstructed (1 x 2) and the un-reconstructed (1 x 1) surfaces. When adjacent sites along the edge row begin to be occupied, the CO molecules tilt alternately by ca. 20 degrees from the surface normal in opposite directions for both the (1 x 2) and (1 x 1) surfaces.  相似文献   

16.
Adsorption of CO on Pt(211) and Pt(311) surfaces has been investigated by the density functional theory (DFT) method (periodic DMol3) with full geometry optimization. Adsorption energies, structures, and C-O stretching vibrational frequencies are studied by considering multiple possible adsorption sites and comparing them with the experimental data. The calculated C-O stretching frequencies agree well with the experimental ones, and precise determination of adsorption sites can be carried out. For Pt(211), CO adsorbs at the atop site on the step edge at low coverage, but CO adsorbs at the atop and bridge sites simultaneously on both the step edge and the terrace with further increasing CO coverage. The present results interpret the reflection adsorption infrared (RAIR) spectra of Brown and co-workers very well from low to high coverage. For Pt(311), CO adsorbs also at the atop site on the step edge at low coverage. The lifting of reconstruction by CO adsorption occurs also for Pt(311), whereas the energy gain for lifting the reconstruction of the Pt(311) surface is smaller than that for Pt(110). The largest difference between the stepped Pt(211)/Pt(311) and Pt(110) surfaces is the occupation on the edge sites at higher coverage. For the stepped surfaces, the bridge site begins to be occupied at higher coverage, whereas the atop site is always occupied for the Pt(110) surface.  相似文献   

17.
A copper-containing nitrite reductase from Alcaligenes xylosoxidans NCIMB 11015 has its own unique blue or type 1 copper protein resonance Raman spectrum in the usual Cu-S(Cys) stretching region, nu(Cu-S(Cys)), with a pair of strong peaks at 412 and 420 cm(-1) and a weak peak at 364 cm(-1). The predominantly nu(Cu-S(Cys)) Raman bands at 412, 420, and 364 cm(-1) of the type 1 copper site all shifted to higher frequencies upon binding of nitrite to the type 2 copper site, and the resonance Raman difference spectra progressively intensified with the increments of nitrite ion concentration. Positive support for substrate binding to the type 2 copper is provided by the nu(Cu-S(Cys)) bands in the resonance Raman spectrum of a type 2 copper-depleted enzyme, which is insensitive to the presence of NO2-. The shift to higher frequency of the Raman bands of the type 1 copper center with the addition of nitrite ions suggests a stronger Cu-S(Cys) interaction in the substrate-bound A. xylosoxidans nitrite reductase.  相似文献   

18.
Experimental data for carbonate adsorption onto synthetic goethite, spanning 3 orders of magnitude in carbonate concentrations, were simulated using the triple-layer surface complexation model (TLM). A single set of TLM parameters successfully described the adsorption behavior versus pH over the concentration range obtained from closed and open CO(2) conditions. An optimization analysis was performed for all possible interfacial charge configurations using FITEQL3.2. The results yielded an optimum charge allocation of 0 and -1 in the 0- and beta-planes, respectively, which suggests a monodentate complex most probably in an inner-sphere configuration (SOCOO(-beta)). Fourier transform infrared (FTIR) spectroscopic measurements on open systems at atmospheric P(CO(2)) confirmed this result by showing a clear peak split (155 cm(-1)) of the nu(3) C-O asymmetric stretching frequency of surface-bound carbonate, consistent with that reported for monodentate Co(III)-carbonato inner-sphere solution complexes. An additional Na(+)-ternary complex (SOCOONa) was invoked in the TLM construct to improve simulations of the enhanced carbonate adsorption occurring at high ionic strength and high pH. The model was successful in predicting carbonate adsorption behavior under diffferent conditions than it was calibrated for. Projections for equilibration at higher P(CO(2))'s (1-10%) than those used in this work show the potential for carbonate sorption densities of up to 2.5-3 μmol/m(2). Copyright 2001 Academic Press.  相似文献   

19.
用离子散射谱(ISS)、俄歇电子能谱(AES)及低能电子衍射(LEED)技术对Ni3Ti(0001)表面结构与组成进行考察后,主要采用高分辨电子能量损失谱(HREELS),以CO为探针分子,研究了清洁及部分氧化的Ni3Ti(0001)表面上Ni,Ti间的相互作用及对CO吸附态的影响.结果表明:(1)在最表层几乎完全为Ni的Ni3Ti(0001)清洁规整表面上,CO没有发生解离;(2)次表层Ti原子与最表层Ni原子间的电子相互作用,使初始吸附的CO伸缩振动与Ni(111)相比向低频位移约60cm-1;(3)适量CO暴露后,CO氧端与近邻Ti原子的成键作用产生了一种新的Nix-C-O-Tiy物种.Ni3Ti(0001)表面部分氧化后,上述(2)和(3)作用消失  相似文献   

20.
Methanation of CO over nickel: Mechanism and kinetics at high H2/CO ratios   总被引:3,自引:0,他引:3  
The CO methanation reaction over nickel was studied at low CO concentrations and at hydrogen pressures slightly above ambient pressure. The kinetics of this reaction is well described by a first-order expression with CO dissociation at the nickel surface as the rate-determining step. At very low CO concentrations, adsorption of CO molecules and H atoms compete for the sites at the surface, whereas the coverage of CO is close to unity at higher CO pressures. The ratio of the equilibrium constants for CO and H atom adsorption, K(CO)/K(H), was obtained from the rate of CO methanation at various CO concentrations. K(H) was determined independently from temperature programmed adsorption/desorption of hydrogen to be K(H) = 7.7 x 10(-4) (bar(-0.5)) exp[43 (kJ/mol)/RT] and hence the equilibrium constants for adsorption of CO molecules may be calculated to be K(CO) = 3 x 10(-7) (bar(-1)) exp[122 (kJ/mol)/RT]. Furthermore, the rate of dissociation of CO at the catalyst surface was determined to be 5 x 10(9) (s(-1)) exp[-96.7 (kJ/mol)/RT] assuming that 5% of the surface nickel atoms are active for CO dissociation. The results are compared to equilibrium and rate constants reported in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号