首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article investigates the errors in supermolecule calculations for the helium dimer. In a full CI calculation, there are two errors. One is the basis set superposition error (BSSE), the other is the basis set convergence error (BSCE). Both of the errors arise from the incompleteness of the basis set. These two errors make opposite contributions to the interaction energies. The BSCE is by far the largest error in the short range and larger than (but much closer to) BSSE around the Van der Waals minimum. Only at the long range, the BSSE becomes the larger error. The BSCE and BSSE largely cancel each other over the Van der Waals well. Accordingly, it may be recommended to not include the BSSE for the calculation of the potential energy curve from short distance till well beyond the Van der Waals minimum, but it may be recommended to include the BSSE correction if an accurate tail behavior is required. Only if the calculation has used a very large basis set, one can refrain from including the counterpoise correction in the full potential range. These results are based on full CI calculations with the aug-cc-pVXZ (X = D, T, Q, 5) basis sets.  相似文献   

2.
We present a new scheme for calculating the basis set superposition error (BSSE) in N-body clusters. It is based on the assumption that each n-body term can be expressed as a sum of only two-body contributions. The conventional Boys–Bernardi method can be used thus for calculating BSSE-corrected energy terms. The scheme is illustrated by some calculations on the hydrogen fluoride trimers and tetramers. The results are compared to the ones obtained with the site–site function counterpoise (SSFC), the hierarchical (Valiron–Mayer) function counterpoise (VMFC), the pairwise additive function counterpoise (PAFC), and the successive reaction counterpoise (SRCP) schemes.  相似文献   

3.
Compact, contracted Gaussian basis sets for halogen atoms are generated and tested in ab initio molecular calculations. These basis sets have similar structure to that of Huzinaga and co-workers' (HTS ) sets; however, they give both better atomic total energies and better properties of atomic valence orbitals. These sets, after splitting of valence orbitals and augmenting with polarization functions, provide molecular results that agree well with those given by extended calculations. Basis set superposition error (BSSE ) is calculated using the counterpoise method. BSSE has only slight influence on calculated equilibrium geometry, shape of potential curve, and electric properties (dipole and quadrupole moments) of molecules. However, atomization energies may be significantly changed by the BSSE .  相似文献   

4.
5.
A semi-empirical counterpoise-type correction for basis set superposition error (BSSE) in molecular systems is presented. An atom pair-wise potential corrects for the inter- and intra-molecular BSSE in supermolecular Hartree-Fock (HF) or density functional theory (DFT) calculations. This geometrical counterpoise (gCP) denoted scheme depends only on the molecular geometry, i.e., no input from the electronic wave-function is required and hence is applicable to molecules with ten thousands of atoms. The four necessary parameters have been determined by a fit to standard Boys and Bernadi counterpoise corrections for Hobza's S66×8 set of non-covalently bound complexes (528 data points). The method's target are small basis sets (e.g., minimal, split-valence, 6-31G*), but reliable results are also obtained for larger triple-ζ sets. The intermolecular BSSE is calculated by gCP within a typical error of 10%-30% that proves sufficient in many practical applications. The approach is suggested as a quantitative correction in production work and can also be routinely applied to estimate the magnitude of the BSSE beforehand. The applicability for biomolecules as the primary target is tested for the crambin protein, where gCP removes intramolecular BSSE effectively and yields conformational energies comparable to def2-TZVP basis results. Good mutual agreement is also found with Jensen's ACP(4) scheme, estimating the intramolecular BSSE in the phenylalanine-glycine-phenylalanine tripeptide, for which also a relaxed rotational energy profile is presented. A variety of minimal and double-ζ basis sets combined with gCP and the dispersion corrections DFT-D3 and DFT-NL are successfully benchmarked on the S22 and S66 sets of non-covalent interactions. Outstanding performance with a mean absolute deviation (MAD) of 0.51 kcal/mol (0.38 kcal/mol after D3-refit) is obtained at the gCP-corrected HF-D3/(minimal basis) level for the S66 benchmark. The gCP-corrected B3LYP-D3/6-31G* model chemistry yields MAD=0.68 kcal/mol, which represents a huge improvement over plain B3LYP/6-31G* (MAD=2.3 kcal/mol). Application of gCP-corrected B97-D3 and HF-D3 on a set of large protein-ligand complexes prove the robustness of the method. Analytical gCP gradients make optimizations of large systems feasible with small basis sets, as demonstrated for the inter-ring distances of 9-helicene and most of the complexes in Hobza's S22 test set. The method is implemented in a freely available FORTRAN program obtainable from the author's website.  相似文献   

6.
Summary The effect of bond functions on the basis set superposition error (BSSE) is investigated at both SCF (self consistent field) and correlated levels for a number of basis sets using the pairwise additive function counterpoise (PAFC), the site-site function counterpoise (SSFC), and the newly proposed successive reaction counterpoise method (SRCP). BSSEs using bond functions are shown to be roughly twice those without bond functions, whereas the latter may still be quite sizeable. The addition of f functions dramatically decreases the bond function BSSE. The results obtained support the empirical decision in our earlier papers to neglect BSSE altogether.  相似文献   

7.
The effect of the inclusion of counterpoise corrections (CP) on the accuracy of interaction energies has been studied for different systems accounting for (1) intermolecular interactions, (2) intramolecular interactions and (3) chemical reactions. To minimize the error associated with the method of choice, the energy calculations were performed using CCSD(T) in all the cases. The values obtained using aug-cc-pVXZ basis sets are compared to CBS-extrapolated values. It has been concluded that at least for the tested systems CP corrections systematically leads to results that differ from the CBS-extrapolated ones to a larger extension than the uncorrected ones. Accordingly, from a practical point of view, we do not recommend the inclusion of such corrections in the calculation of interaction energies, except for CBS extrapolations. The best way of dealing with basis set superposition error (BSSE) is not to use CP corrections, but to make a computational effort for increasing the basis set. This approach does not eliminate BSSE but significantly decreases it, and more importantly it proportionally decreases all the errors arising from the basis set truncation.  相似文献   

8.
In the present paper we analyze basis set superposition error (BSSE) removal methods from many-body components of interaction-induced electric properties. The Valiron–Mayer function counterpoise (VMFC), site–site function counterpoise (SSFC) and TB methods have been employed in order to obtain the incremental optical components of linear hydrogen fluoride clusters (HF)n, where n = {3,4}. Following Mierzwicki and Latajka, who have performed similar calculations for the interaction energy, we compare those three methods of eliminating BSSE using several Dunning’s correlation consistent basis sets.  相似文献   

9.
In this contribution, we propose an approximate basis set superposition error (BSSE) correction scheme for the site-site function counterpoise and for the Valiron-Mayer function counterpoise correction of second order to account for the basis set superposition error in clusters with a large number of subunits. The accuracy of the proposed scheme has been investigated for a water cluster series at the CCSD(T), CCSD, MP2, and self-consistent field levels of theory using Dunning's correlation consistent basis sets. The BSSE corrected stabilization energies for a series of water clusters are presented. A study regarding the possible savings with respect to computational resources has been carried out as well as a monitoring of the basis set dependence of the approximate BSSE corrections.  相似文献   

10.
We describe some details related to a new, general, and efficient implementation of the BSSE‐free SCF and second‐order Møller–Plesset perturbation theories of intermolecular interactions, based on the “Chemical Hamiltonian Approach” (CHA). The program is applicable for both open‐shell and closed‐shell systems and for an arbitrary number of interacting subsystems. With the new program the CHA method is faster than the usual “counterpoise correction” scheme for single point calculations, especially for clusters consisting of several molecules. The numerical results provided by these conceptually different schemes, however, have again found to be very close to each other. The CHA scheme is particularly good for providing truly BSSE‐free MP2 data for intermolecular potentials. © 2006 Wiley Periodicals, Inc. J Comput Chem 27: 1505–1516, 2006  相似文献   

11.
Ab initio complete optimizations at MP2/6-31++G** level have been performed in the T-shaped geometry of the benzene-benzene and benzene-naphthalene complexes. To check the effect of the basis set superposition error (BSSE), optimizations have been done in the BSSE corrected and BSSE uncorrected potential energy surfaces. The BSSE effect in the calculation of the Hessian has also been evaluated to check its influence in the frequency values. Quantum theory atoms in molecules (QTAIM) calculations have also been performed on both dimers. Intermolecular energies differ around a 25% when the optimization is performed with or without counterpoise corrected gradients. The influence of BSSE is also noticeable in the distances. Frequency shifts show big changes because of the BSSE. Thus, uncorrected values are up 350% larger than corrected ones. The hypotheses given in the literature to explain the origin of the blue-shifting hydrogen bond do not seem to give a suitable explanation for all characteristics of the behavior found in the studied systems.  相似文献   

12.
The equilibrium structures, binding energies, vibrational harmonic frequencies, and the anharmonic corrections for two different (cyclic and asymmetric) urea dimers and for the adenine–thymine DNA base pair system have been studied using the second-order Møller–Plesset perturbation theory (MP2) method and different density functional theory (DFT) exchange–correlation (XC) functionals (BLYP, B3LYP, PBE, HCTH407, KMLYP, and BH and HLYP) with the D95V, D95V**, and D95V++** basis sets. The widely used a posteriori Boys–Bernardi or counterpoise correction scheme for basis set superposition error (BSSE) has been included in the calculations to take into account the BSSE effects during geometry optimization (on structure), on binding energies and on the different levels of approximation used for calculating the vibrational frequencies. The results obtained with the ab initio MP2 method are compared with those calculated with different DFT XC functionals; and finally the suitability of these DFT XC functionals to describe intermolecular hydrogen bonds as well as harmonic frequencies and the anharmonic corrections is assessed and discussed.  相似文献   

13.
It is shown that the conjecture that the total energy for a given molecular or supermolecular system is affected by basis set superposition error (BSSE) leads to inconsistent results. While the calculations of interaction energies, dissociation energies, or energy barriers depend on the fragments (reactants, products) involved in their definitions and, consequently, are affected by BSSE, the total energies of molecular or supermolecular systems do not depend on any virtual fragment partition and are, therefore, BSSE free. Contribution to the Serafin Fraga Memorial Issue.  相似文献   

14.
15.
In the present work the intermolecular BSSE, associated to the A-B interaction, is obtained by subtracting the intramolecular BSSE of the fragments from the intramolecular BSSE of the supermolecule, and considering every atom as a fragment in the calculation of each intramolecular BSSE. This atom by atom scheme (CP(aa)) is based on the consideration that the proximity of the fragments may affect the intramolecular BSSE of every involved species, and artificially influences the value of the BSSE associated to the supermolecule formation. It drastically decreases the reported counterpoise overcorrection of the A-B interaction, even though it does not deal with all the overcorrection because it includes all the orbitals, and not only the unoccupied ones. This new approach has been tested on the water dimer, some hydrogen fluoride weakly bonded complexes, the conformational analysis of 1,2-dichloroethane, and the reaction profile of formaldehyde + OH reaction.  相似文献   

16.
Carboxylic acid dimers and their monosulfur derivatives are investigated by density functional theory calculations. Basis set superposition error (BSSE) counterpoise correction is included to compare the influence of BSSE on the interaction energies as well as on the geometries. The nature of hydrogen bond is determined on the basis of atoms in molecules (AIM) and natural bond orbital (NBO) analyses. Good correlations have been established between H‐bond length versus AIM topological parameter, orbital interaction, and barrier height for proton transfer. The reactivity behavior along the reaction path of the double proton transfer reaction has also been studied. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

17.
In response to Van Mourik's comments on our paper (J Comput Chem 2007, 28, 1208.) we present an extended version of our rotation method. We also prove that intramolecular interaction energies as well the basis set superposition errors calculated with our rotation method are comparable with those obtained by the counterpoise method of Boys and Bernardi (Mol Phys 1970, 19, 533). In intramolecular interaction energy calculations, if the interacting groups are in proximity, our rotation method is recommended to avoid artificial interactions, which can be induced by fragmentation. © 2007 Wiley Periodicals, Inc.J Comput Chem, 2008  相似文献   

18.
Binding energies of selected hydrogen bonded complexes have been calculated within the framework of density functional theory (DFT) method to discuss the efficiency of numerical basis sets implemented in the DFT code DMol3 in comparison with Gaussian basis sets. The corrections of basis set superposition error (BSSE) are evaluated by means of counterpoise method. Two kinds of different numerical basis sets in size are examined; the size of the one is comparable to Gaussian double zeta plus polarization function basis set (DNP), and that of the other is comparable to triple zeta plus double polarization functions basis set (TNDP). We have confirmed that the magnitudes of BSSE in these numerical basis sets are comparative to or smaller than those in Gaussian basis sets whose sizes are much larger than the corresponding numerical basis sets; the BSSE corrections in DNP are less than those in the Gaussian 6-311+G(3df,2pd) basis set, and those in TNDP are comparable to those in the substantially large scale Gaussian basis set aug-cc-pVTZ. The differences in counterpoise corrected binding energies between calculated using DNP and calculated using aug-cc-pVTZ are less than 9 kJ/mol for all of the complexes studied in the present work. The present results have shown that the cost effectiveness in the numerical basis sets in DMol3 is superior to that in Gaussian basis sets in terms of accuracy per computational cost.  相似文献   

19.
20.
A largely unsolved problem in computational biochemistry is the accurate prediction of binding affinities of small ligands to protein receptors. We present a detailed analysis of the systematic and random errors present in computational methods through the use of error probability density functions, specifically for computed interaction energies between chemical fragments comprising a protein-ligand complex. An HIV-II protease crystal structure with a bound ligand (indinavir) was chosen as a model protein-ligand complex. The complex was decomposed into twenty-one (21) interacting fragment pairs, which were studied using a number of computational methods. The chemically accurate complete basis set coupled cluster theory (CCSD(T)/CBS) interaction energies were used as reference values to generate our error estimates. In our analysis we observed significant systematic and random errors in most methods, which was surprising especially for parameterized classical and semiempirical quantum mechanical calculations. After propagating these fragment-based error estimates over the entire protein-ligand complex, our total error estimates for many methods are large compared to the experimentally determined free energy of binding. Thus, we conclude that statistical error analysis is a necessary addition to any scoring function attempting to produce reliable binding affinity predictions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号