首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We develop a statistical method to estimate the density of states from the knowledge of its first moments. We apply this method to the calculation of the density of states of an s band in a simple cubic lattice. Then we use it to determine the binding energy of a transition atom adsorbed on tungsten in a LCAO approximation. The binding energies obtained agree with the experimental values, but they do not exhibit the experimental peak which may be due to correlation effects.  相似文献   

2.
We have extended the cluster-Bethe lattice method to study realistic tight-binding Hamiltonians. The numerical solution of the transfer matrix in the Bethe lattice is very stable and requires about 50 steps of our iterative procedure to reach convergency. We apply this method to study the density of states of group-IV semiconductors (C, Si, Ge) using a five-parameter sp3 Hamiltonian, which takes into account all possible interactions between sp3 hybrids in nearest-neighbor atoms. Our results show clearly that the main features of the density of states are due to short-range order. Clusters of about 30 atoms reproduce very well the crystalline density of states. Based on our results we propose a model for the density of states in the gap region of an amorphous semiconductor.  相似文献   

3.
We consider a nearest-neighbor-interaction ±J Ising spin glass in a square lattice. Inspired by natural evolution, we design a dynamic rule that includesselection, randomness, andmultibranch exploration. Following this rule, we succeed in walking along the space of states between local energy maxima and minima alternately. During the walk, we store various information about the spin states corresponding to these minima and maxima for later statistical analysis. In particular, we plot a histogram displaying how many times each minimum (or maximum) energy is visited as a function of the corresponding density value. Through finite-size scaling analysis, we conclude that a nonvanishing fraction of bonds remains unsatisfied (satisfied) at these energy minimum (maximum) states in the thermodynamic limit. This fraction measures the degree of unavoidable frustration of the system. Also in this limit, the width of these histograms vanishes, meaning that almost all metastable states occur at the same energy density value, with no dispersion.  相似文献   

4.
We consider a polaron Hamiltonian in which not only the lattice and the electron-lattice interactions, but also the electron hopping term is affected by anharmonicity. We find that the one-electron ground states of this system are localized in a wide range of the parameter space. Furthermore, low energy excited states, generated either by additional momenta in the lattice sites or by appropriate initial electron conditions, lead to states constituted by a localized electron density and an associated lattice distortion, which move together through the system, at subsonic or supersonic velocities. Thus we investigate here the localized states above the ground state which correspond to moving electrons. We show that besides the stationary localized electron states (proper polaron states) there exist moving localized solectron states which can be easily excited. The evolution of these localized states suggests their potential as new carriers for fast electric charge transport.  相似文献   

5.
聚二乙炔电子特性研究   总被引:2,自引:2,他引:0       下载免费PDF全文
将聚二乙炔主链简化为有限的一维复式碳原子链,利用紧束缚近似,在周期性和非周期性边界条件下,考虑π电子在最近邻的跳跃,计算和分析了不同数目聚二乙炔单体聚合而成的有限一维原子链的能谱和态密度,揭示了聚二乙炔电子结构的基本特点.  相似文献   

6.
This paper presents the theoretical investigation of energy levels of valence bands (VB) and core levels (CL) of the ferroelectric SbSl single crystals in antiferroelectric and ferroelectric phases. Since the best approximation for the deep VB levels is a calculation by the Hartree-Fock method, the molecular model of a SbSI crystal was used for calculations. This model of the crystal was also used for calculations of the total density of states. It was found that the VB and CL of this ferroelectric semiconductor are sensitive to the small lattice distortion at the phase transition, and that an average of the total density of states, when all atoms participate in oscillations of all normal modes, are more similar to the experimental X-ray photoelectron spectra (XPS). The experimental splitting of CL obtained by XPS was compared with the theoretically calculated one by two different methods. The cluster model calculations showed that the splitting of the CL in SbSI might be caused by photoelectron emission from the atoms, which have different valence state, at the surface.  相似文献   

7.
We calculate the electronic properties of austenite and martensite Fe-9%Mn alloys using the self consistent full-potential linearized-plane-wave method under the generalized gradient approximation full lattice relaxation. By minimizing total-energy, the lattice constants in their ground states were determined. We discuss the total energy dependence of the volume, and density of states (DOS).   相似文献   

8.
We report a density functional calculation on the NiAs-type Mn-based pnictides. The total energy as a function of volume is obtained by means of self-consistent tight-binding linear muffin–tin orbital method by performing spin and non-spin polarized calculation. From the present study, we predict a magnetic-phase transition from ferromagnetic (FM) to non-magnetic (NM) around 49 and 35.7 GPa for MnAs and MnSb, respectively. The pressure-induced transition is found to be a second-order transition. The band structure and density of states (DOS) are plotted for FM and NM states. Apart from this the ground-state properties like magnetic moment, lattice parameter and bulk modulus are calculated and are compared with the available results. Under large volume expansion these compounds exist in zinc-blende (ZB) structure, which shows half metallicity. The magnetic moment and equilibrium lattice constants for ZB structure are obtained as well as band structure and DOS are presented.  相似文献   

9.
We study ultracold collisions in fermionic ytterbium by precisely measuring the energy shifts they impart on the atoms' internal clock states. Exploiting Fermi statistics, we uncover p-wave collisions, in both weakly and strongly interacting regimes. With the higher density afforded by two-dimensional lattice confinement, we demonstrate that strong interactions can lead to a novel suppression of this collision shift. In addition to reducing the systematic errors of lattice clocks, this work has application to quantum information and quantum simulation with alkaline-earth atoms.  相似文献   

10.
A relation between a class of stationary points of the energy landscape of continuous spin models on a lattice and the configurations of an Ising model defined on the same lattice suggests an approximate expression for the microcanonical density of states. Based on this approximation we conjecture that if a O(n) model with ferromagnetic interactions on a lattice has a phase transition, its critical energy density is equal to that of the n=1 case, i.e., an Ising system with the same interactions. The conjecture holds true in the case of long-range interactions. For nearest-neighbor interactions, numerical results are consistent with the conjecture for n=2 and n=3 in three dimensions. For n=2 in two dimensions (XY model) the conjecture yields a prediction for the critical energy of the Bere?inskij-Kosterlitz-Thouless transition, which would be equal to that of the two-dimensional Ising model. We discuss available numerical data in this respect.  相似文献   

11.
We introduce a variational method for the approximation of ground states of strongly interacting spin systems in arbitrary geometries and spatial dimensions. The approach is based on weighted graph states and superpositions thereof. These states allow for the efficient computation of all local observables (e.g., energy) and include states with diverging correlation length and unbounded multiparticle entanglement. As a demonstration, we apply our approach to the Ising model on 1D, 2D, and 3D square lattices. We also present generalizations to higher spins and continuous-variable systems, which allows for the investigation of lattice field theories.  相似文献   

12.
 运用基于密度泛函理论的平面波赝势方法(PWP),计算研究了氧化镉NaCl结构(B1结构)和CsCl结构(B2结构)在不同压力条件下的几何结构、弹性性质、电子结构和光学性质。交换关联能分别采用广义梯度近似(GGA)和局域密度近似(LDA)。通过比较计算和实验得到的晶格常数和体模量不难发现,LDA的计算结果更符合实验值。在高压的作用下,两种结构的导带能级有向高能级移动的趋势,而价带能级有向低能级移动的趋势,因此直接带隙变大。同时,对照态密度分布图及高压下能级的移动情况,分析了CdO两种结构在高压作用下的光学性质。  相似文献   

13.
熊烨 《物理学报》1999,48(6):1138-1146
应用Lanczos严格对角化方法在具有电子-电子强关联效应的情况下,研究一维高聚物半导体中激子态的能量和波函数的物性,并以此为基础计算了在有局部晶格畸变时激子态的变化及其对发光性质的影响.并发现在一定的互作用参数下,其发光强度与畸变的强度成正比关系. 关键词:  相似文献   

14.
15.
For a class of frustrated antiferromagnetic spin lattices (in particular, the square-kagomé and kagomé lattices) we discuss the impact of recently discovered exact eigenstates on the stability of the lattice against distortions. These eigenstates consist of independent localized magnons embedded in a ferromagnetic environment and become ground states in high magnetic fields. For appropriate lattice distortions fitting to the structure of the localized magnons the lowering of magnetic energy can be calculated exactly and is proportional to the displacement of atoms leading to a spin-Peierls lattice instability. Since these localized states are present only for high magnetic fields, this instability might be driven by magnetic-field. The hysteresis of the spin-Peierls transition is also discussed.  相似文献   

16.
Within a general framework, we discuss the wave function statistics in the Lloyd model of Anderson localization on a one-dimensional lattice with a Cauchy distribution for random on-site potential. We demonstrate that already in leading order in the disorder strength, there exists a hierarchy of anomalies in the probability distributions of the wave function, the conductance, and the local density of states, for every energy which corresponds to a rational ratio of wavelength to lattice constant. Power-law rather than log-normal tails dominate the short-distance wave-function statistics.  相似文献   

17.
The signed loop approach is a beautiful way to rigorously study the two-dimensional Ising model with no external field. In this paper, we explore the foundations of the method, including details that have so far been neglected or overlooked in the literature. We demonstrate how the method can be applied to the Ising model on the square lattice to derive explicit formal expressions for the free energy density and two-point functions in terms of sums over loops, valid all the way up to the self-dual point. As a corollary, it follows that the self-dual point is critical both for the behaviour of the free energy density, and for the decay of the two-point functions.  相似文献   

18.
The density of states of Dirac fermions with a random mass on a two‐dimensional lattice is considered. We give the explicit asymptotic form of the single‐electron density of states as a function of both energy and (average) Dirac mass, in the regime where all states are localized. We make use of a weak‐disorder expansion in the parameter g/m2, where g is the strength of disorder and m the average Dirac mass for the case in which the evaluation of the (supersymmetric) integrals corresponds to non‐uniform solutions of the saddle point equation. The resulting density of states has tails which deviate from the typical pure Gaussian form by an analytic prefactor.  相似文献   

19.
We study the localization and addressability of ultracold atoms in a combined parabolic and periodic potential. Such a potential supports the existence of localized stationary states and we show that applying a radio frequency field allows us to selectively address atoms in these states. This method is used to measure the energy and momentum distribution of the atoms in the localized states. We also discuss possible extensions of this scheme to address and manipulate atoms in single lattice sites.  相似文献   

20.
We establish several properties of the integrated density of states for random quantum graphs: Under appropriate ergodicity and amenability assumptions, the integrated density of states can be defined using an exhaustion procedure by compact subgraphs. A trace per unit volume formula holds, similarly as in the Euclidean case. Our setting includes periodic graphs. For a model where the edge lengths are random and vary independently in a smooth way we prove a Wegner estimate and related regularity results for the integrated density of states. These results are illustrated for an example based on the Kagome lattice. In the periodic case we characterise all compactly supported eigenfunctions and calculate the position and size of discontinuities of the integrated density of states.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号