首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A supercritical fluid extraction/enhanced solvent extraction system (SFE/ESE) was used to remove polar and non-polar analytes from various matrices. Extraction of environmental pollutants from soil, additives from low density polyethylene, sulfa drugs from animal tissue, and drug from tablet was performed using both SFE and ESE. Results showed that a single instrumental system can be used to perform both ESE with organic solvents and SFE with carbon dioxide-based fluids. Each method has its own unique advantages and applications. The ability to carry out both solvent extraction and supercritical fluid extraction with one system has obvious economical advantages.  相似文献   

2.
Analysis of low concentration polymer additives has been a challenging problem. The commonly used methods of analysis involve the initial extraction of polymer additives with solvents, often in a Soxhlet apparatus, followed by liquid, size exclusion, or gas chromatography. This paper describes the on-line super-critical fluid extraction (SFE)-supercritical fluid chromatographic (SFC) determination of different additives from low density polyethylene. Cryogenic collection was used as an interface between SFE and SFC to focus the extraction eluate before transfer to an analytical SFC column for quantitative analysis.  相似文献   

3.
Volatile flavour components of tea flowers (Camellia sinensis) were isolated by two methods viz. simultaneous distillation extraction (SDE), supercritical fluid extraction (SFE), analyzed by GC and GC/MS and compared with headspace analysis (HS). The composition of the volatile components extracted by the three methods differed considerably. In SFE, phenylethanol (14.7%), linalool (7.9%), (E)-linalool oxide furanoid (3.5%), epoxy linalool (1.6%), geraniol (2.3%) and hotrienol (1.5%) were major components. m-Xylene (2.6%), (E)-linalool oxide pyranoid (5.4%), p-myrcene (5.2%), alpha-cadinol (4.3%) and methyl palmitate (2.9%) were major compounds isolated by SDE. 3-hexenol (2.1%) (E)-4,8-dimethyl-1,3,7-nonatriene (20.9%) and linalool (35.1%) are major components in headspace analysis. Acetophenone and pheromone germacrene D is detected in tea flowers by all the methods studied. Floral, fresh and fruity odour of tea flowers is retained by SFE as there is very little loss of heat sensitive volatiles in SFE. The flavour isolated from SFE has superior quality compared to SDE.  相似文献   

4.
采用分析型超临界流体萃取技术提取中药肉苁蓉的组分,然后以气相色谱/质谱联用仪测定了萃取物的化学成分,并考察了影响萃取效率的主要因素。结果表明,与常规中药研究方法相比,本法可更有效地从复杂的中药基体中提取它们的成分。  相似文献   

5.
To improve the aroma characterization of various strawberry cultivars, we tested supercritical fluid extraction (SFE) to determine its suitability for the extraction of aroma compounds from fresh fruit, comparing SFE results with traditional solvent extraction with dichloromethane. Using SFE it was possible to recover the majority of the aroma compounds which can be also found in the solvent extract; patterns related to variety and degree of maturation were preserved. Our results showed, however, that SFE is more selective and was able to recover the ‘character impact’ compound of wild strawberry. Our findings from the odor analysis of furaneol standard emphasize the importance of using a more selective extraction procedure, and always combining instrumental detection with sensory analysis.  相似文献   

6.
超临界流体萃取法测定补骨脂中的主要成分   总被引:7,自引:1,他引:6  
 采用超临界流体萃取(SFE)技术和CGC技术测定了 中药补骨脂中的补骨脂素和异补骨脂素。对超临界流体萃取过程中影响萃取效率的主要因素 采用正交设计法和方差分析法进行了考察,确定了主效应和适宜的操作条件。与传统的萃取 法比较,SFE 具有经济、快速、简便、选择性好、环境污染小等优点。  相似文献   

7.
J. W. King  Z. Zhang 《Chromatographia》2000,51(7-8):467-472
Summary Optimizing the extracted analyte collection step in analytical supercritical fluid extraction (SFE) is of key importance in achieving high analyte recoveries and extraction efficiencies. Whereas the extraction step in SFE has been well characterized both theoretically and experimentally; the analyte collection step after SFE has few theoretical guidelines, aside from a few empirical studies which have appeared in the literature. In this study, we have applied several theoretical approaches using experimental data to optimize analyte trapping efficiency in SFE. A vapour-liquid equilibrium model has been formulated to predict the trapping efficiency for extracted solute collection in a open collection vessel. Secondly, a simple solution thermodynamic model for predicting solute (analyte) activity coefficients in various trapping solvents has been shown to have utility in predicting collection efficiencies. Finally, effective trapping efficiency after SFE using sorbent media is related to the extent of analyte breakthrough on the sorbent-filled trap after depressurization of supercritical fluid. Using experimental data determined via physico-chemical gas chromatographic measurements (i. e., specific retention volumes), we have shown the relationship between analyte breakthrough volume off of the trapping sorbent and volume of depressurized fluid through the collection trap. The above theoretical guidlines should prove of value to analysts in designing and optimizing the best conditions for trapping analytes after extraction via analytical SFE. Names are necessary to report factually on available data; however the USDA neither guarantees nor warrants the standard of the product, and the use of the name by USDA implies no approval of the products to the exclusion of others that may also be suitable.  相似文献   

8.
In the present paper a new extraction technique based on the combination of solid-phase/supercritical-fluid extraction (SPE/SFE) with subsequent reversed-phase HPLC is described. The SPE/SFE extractor was originally constructed from SPE-cartridge incorporated into the SFE extraction cell. Selected groups of benzoic acid derivatives (p-hydroxybenzoic, protocatechuic, gallic, vanillic and syringic acid), hydroxybenzaldehydes (4-hydroxybenzaldehyde and 3,4-dihydroxybenzaldehyde) and cinnamic acid derivatives (o-coumaric, p-coumaric, caffeic, ferulic, sinapic and chlorogenic acid) were extracted. Cyclic addition of binary extraction solvent system based on methanol:water (1:1, v/v) and methanol/ammonia aqueous solution was used for extraction at 40 MPa and 80 °C. The p-hydroxybenzoic, protocatechuic, vanillic, syringic, caffeic and chlorogenic acid; 4-hydroxybenzaldehyde and 3,4-dihydroxybenzaldehyde were identified by HPLC-electrospray mass spectrometry in SPE/SFE extracts of acid hydrolyzates of microalga (Spongiochloris spongiosa) and cyanobacterial strains (Spirulina platensis, Anabaena doliolum, Nostoc sp., and Cylindrospermum sp.). For the identification and quantification of the compounds the quasi-molecular ions [M−H] and specific fragments were analysed by quadrupole mass spectrometry analyzer. Our analysis showed that the microalgae and cyanobacteria usually contained phenolic acids or aldehydes at μg levels per gram of lyophilized sample. The proposed SPE/SFE extraction method would be useful for the analysis of different plant species containing trace amount of polar fraction of phenols.  相似文献   

9.
天然产物研究一直是植物学、化学和药学的重要研究领域.通过从天然产物中寻找生物活性成分和先导物是创制新药的有效途径之一.有效成分的提取是天然产物研究中最基本和最关键的环节.超临界流体萃取(Supercritical fluid extraction,简称SFE)是近年来发展较快的一种新型样品提取技术.超临界CO2作为最常用的萃取剂已被用于天然药物中非极性和弱极性有效成分的提取,尤其是挥发性和热敏性的物质.此外,通过加入适当的添加剂还可有效地萃取极性化合物,和传统的化学方法相比,  相似文献   

10.
Two new sample preparation procedures that produce solvent-free extracts especially suitable for use with high resolution GC are described. One is based on Soxhlet extraction in a pressurized container that permits the use of liquid carbon dioxide as the extractant; the other utilizes refluxing difluorodichloro-methane (Freon 12) to isolate entrained volatiles from gas streams.  相似文献   

11.
土壤中烃类污染物的超临界流体萃取   总被引:7,自引:0,他引:7  
周长利  尤进茂 《分析化学》1997,25(7):796-799
采用超临界流体萃取技术提取环境样品中的烃类污染物,以色谱-质谱联用仪测定了萃取物的化学成分,考察了影响萃取效率的主要因素。比传统的索氏萃取能更有效地从复杂环境样品中萃取分析物。  相似文献   

12.
Abstract

Application of supercritical fluid extraction (SFE) utilizing pure carbon dioxide for selective isolation of organophosphates from contaminated cereals has been tested.

At the beginning of the experiments the extractability of added standards from an empty extraction vessel (thimble) and from various materials such as filter paper, sand, Celite and anhydrous sodium sulfate was tested to estimate the behavior of organophosphates. Further method development was carried out using a spiked sample of flour, which was analyzed within the proficiency testing for organophosphorus pesticides analysis (round 7) organized by Food Analysis Performance Assessment Scheme (FAPAS, MAFF-UK).

Comparison of the SFE method with a classical method currently employed for sample preparation (i.e. extraction with acetone/methanol mixture followed by gel permeation chromatographic clean up) showed advantages of the SFE technique such as simplification of the sample preparation step and thereby significant speeding up of the determination of organophosphates in cereals.  相似文献   

13.
A method has been developed for the quantitative extraction of nitrotoluenes (2,3-dinitrotoluene, 2,4-dinitrotoluene and trinitrotolugene) from water using a BakerbondTM phenyl sorbent. The average solid phase extraction recoveries for spiked standards ranged from 80 to 95 percent for reagent water and 52 to 95 percent from well and surface water in the low ppb and ppt levels. After the nitrotoluenes had been trapped on the solid sorbent they were quantitatively eluted using SFE. Adding toluene to the extraction cell increased the rate of extraction, but did not improve analyte recovery versus unmodified CO2. The extracts were analyzed off-line with GC–ECD using an internal standard. Extraction losses were due to analyte breakthrough, and not from poor SFE recoveries. This demonstrates that supercritical fluid extraction is a suitable elution technique for analytes trapped on solid phase extraction sorbents. Also, a method for the direct on-line coupling of SPE to GC, using SFE, has been developed and evaluated. Supercritical CO2 is ideal for directly coupling SPE to GC, since carbon dioxide is a gas under ambient conditions. One potential problem of on-line SPE–SFE–GC is the presence of residual water trapped on the active sites of the Bakerbond13 phenyl sorbent. This problem was dealt with by using a split interface previously described by Hawthorne. From the results of this study, the relative standard deviation of the on-line SPE–SFE–GC interface was determined to be between 4 and 10 percent. In addition, there was no significant difference in the precision of the method with or without the use of an internal standard. A calibration curve was also constructed (r2 = 0.995) from spiked controls, demonstrating that the method is quantitative.  相似文献   

14.
A method combining the techniques of liquid – solid disk extraction (LSDE) and supercritical fluid elution (SFE) has been developed for the phenols regulated by the Clean Water Act. LSDE uses a disk or membrane made of polytetrafluoroethylene (PTFE) fibrils impregnated with small particles, e.g. styrene divinylbenzene (SDB) resin, to extract phenols from water. After disk extraction the retained analytes are eluted from the disk using SFE. SFE is used as an alternative to liquid solvent elution with an organic solvent. Analytes are separated, identified, and quantified using gas chromatography – ion trap detector mass spectrometry (GC-ITDMS). The method is capable of sub parts per billion detection limits, and precision of 5–28% RSD. Evaluation of various disks or membranes, such as C18-silica disks, SDB disks, and ion exchange membranes, has also been performed for the extraction of phenols from water. The results obtained from the in-situ aqueous acetylation of phenols and extraction of their acetates are quantitative. The utilization of LSDE and SFE techniques has proven to be a more effective approach than liquid – liquid extraction in minimizing air pollution and solvent waste.  相似文献   

15.
Supercritical fluid extraction (SFE) of the volatile oil from Thymus vulgaris L. aerial flowering parts was performed under different conditions of pressure, temperature, mean particle size and CO2 flow rate and the correspondent yield and composition were compared with those of the essential oil isolated by hydrodistillation (HD). Both the oils were analyzed by GC and GC‐MS and 52 components were identified. The main volatile components obtained were p‐cymene (10.0–42.6% for SFE and 28.9–34.8% for HD), γ‐terpinene (0.8–6.9% for SFE and 5.1–7.0% for HD), linalool (2.3–5.3% for SFE and 2.8–3.1% for HD), thymol (19.5–40.8% for SFE and 35.4–41.6% for HD), and carvacrol (1.4–3.1% for SFE and 2.6–3.1% for HD). The main difference was found to be the relative percentage of thymoquinone (not found in the essential oil) and carvacryl methyl ether (1.0–1.2% for HD versus t?0.4 for SFE) which can explain the higher antioxidant activity, assessed by Rancimat test, of the SFE volatiles when compared with HD. Thymoquinone is considered a strong antioxidant compound.  相似文献   

16.
Supercritical fluid extraction (SFE) provides for the first time a viable option to conventional and widely used Soxhlet extraction. The ability to change the solvating power of a single supercritical fluid by changing its density is an exceedingly attractive feature. An environmentally safe alternative such as supercritical carbon dioxide to organochlorine solvents which are widely used today in many government and industrial analytical laboratories for sample preparation is desirable. SFE may also constitute a viable alternative to other popular sample preparation techniques such as liquid-liquid extraction, solid phase extraction and purge/trap. Much research, however, must be done in order to understand, optimize and apply this technology. For example, (a) automation of extraction, (b) matrix effects, (c) new fluids/modifiers/additives, (d) trapping efficiency, (e) recovery of extracted analytes, and (f) extraction kinetics are some areas which need a greater understanding. This review is concerned with many of these topics as they relate to trace organic analysis wherein SFE is the primary sample preparation technique.  相似文献   

17.
Supercritical fluid extraction (SFE) of the fluoroquinolones norfloxacin and ofloxacin from chicken breast muscles was examined. A liquid chromatography with fluorescence detection was used for the determination of the fluoroquinolones. Extraction conditions of the SFE were optimized by determining the extraction parameters to achieve a sufficiently high recovery of each fluoroquinolone in fortified-muscle samples. Recovery values for the extraction of the fluoroquinolones using the SFE ranged from 70 to 87%. Chickens were treated orally with each fluoroquinolone and their muscles were extracted at set time intervals for time-course determination of the fluoroquinolones in chickens. The SFE combined with liquid chromatographic analysis showed that the concentrations of the fluoroquinolones decreased gradually with time in the chicken muscles after oral treatment, giving a concentration less than 5 ng/ml in 120 h. No further sample cleanup procedures were required after the SFE. These results suggest that SFE method is an extraction method for the determination of norfloxacin and ofloxacin in chicken muscle.  相似文献   

18.
A novel integral restrictor–collector has been designed for use with a conventional supercritical fluid extraction (SFE) apparatus. The assembly reduces the path length between a micrometering valve and collector (a solid phase extraction (SPE) column), obviating the need for the complicated tubing and connectors usually associated with such devices. Also described is a heating-block assembly which encases the micrometering valve and provides uniform heating of the valve during extraction. The valve–SPE column assembly was part of a system used to perform the first reported SFE multi-residue drug recovery from fortified liver. Extractions used carbon dioxide pressurized to 690 bar as the supercritical fluid. Flow rates of expanded gas through the SPE columns were 3–4 L/min with concomitant quantitative trapping of the analytes on the sorbent bed. After SFE the three nitrobenzamide antimicrobial drug residues from the liver were eluted from the SPE columns by off-line analysis. The results demonstrated that losses of trace level analytes in tissue may be significantly reduced by including an integral metering valve-collector assembly as part of the SFE apparatus.  相似文献   

19.
超临界萃取装置的研制及其应用   总被引:5,自引:0,他引:5  
超临界流体萃取是近的上来兴起的一种新的分离技术,报道了将超临界萃取原理与回流技术相结合研制的二氧化碳回流中低压超临界流体萃取设备,解决了关键实验手段,通过应用证明设备可靠,费用低廉,有实用价值。  相似文献   

20.
任丽  王国俊 《色谱》1998,16(3):238-243
利用吸附剂GDX-301对黄河水中的有机污染物富集并以超临界CO2脱附后,通过气相色谱、色谱-红外-质谱联用技术对各目标分析物逐一定性,并比较了超临界CO2萃取和溶剂洗脱的结果。实验表明,在20MPa,60℃,40min条件下进行超临界CO2萃取时的萃取效率和溶剂萃取效率相当或略高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号