首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The crossed beam reactions of the methylidyne radical with ethylene (CH(X(2)Π) + C(2)H(4)(X(1)A(1g))), methylidyne with D4-ethylene (CH(X(2)Π) + C(2)D(4)(X(1)A(1g))), and D1-methylidyne with ethylene (CD(X(2)Π) + C(2)H(4)(X(1)A(1g))) were conducted at nominal collision energies of 17-18 kJ mol(-1) to untangle the chemical dynamics involved in the formation of distinct C(3)H(4) isomers methylacetylene (CH(3)CCH), allene (H(2)CCCH(2)), and cyclopropene (c-C(3)H(4)) via C(3)H(5) intermediates. By tracing the atomic hydrogen and deuterium loss pathways, our experimental data suggest indirect scattering dynamics and an initial addition of the (D1)-methylidyne radical to the carbon-carbon double bond of the (D4)-ethylene reactant forming a cyclopropyl radical intermediate (c-C(3)H(5)/c-C(3)D(4)H/c-C(3)H(4)D). The latter was found to ring-open to the allyl radical (H(2)CCHCH(2)/D(2)CCHCD(2)/H(2)CCDCH(2)). This intermediate was found to be long lived with life times of at least five times its rotational period and decomposed via atomic hydrogen/deuterium loss from the central carbon atom (C2) to form allene via a rather loose exit transition state in an overall strongly exoergic reaction. Based on the experiments with partially deuterated reactants, no compelling evidence could be provided to support the formation of the cyclopropene and methylacetylene isomers under single collision conditions. Likewise, hydrogen/deuterium shifts in the allyl radical intermediates or an initial insertion of the (D1)-methylidyne radical into the carbon-hydrogen/deuterium bond of the (D4)-ethylene reactant were found to be-if at all-of minor importance. Our experiments propose that in hydrocarbon-rich atmospheres of planets and their moons such as Saturn's satellite Titan, the reaction of methylidyne radicals should lead predominantly to the hitherto elusive allene molecule in these reducing environments.  相似文献   

2.
Density functional (B3LYP) calculations, using the 6-31G basis set, have been employed to study the title reactions. For the model reaction (H(2)C=C-NH(+)=CH(2) + H(2)C=CH(2)), a complex has been formed with 6.2 kcal/mol of stabilization energy and the transition state is 4.0 kcal/mol above this complex, but 2.1 kcal/mol below the reactants. However, the substituent effects are quite remarkable. When ethene is substituted by electron-withdrawing group CN, the reaction could also yield six-membered-ring products, but the energy barriers are all more than 7 kcal/mol, which shows that CN group unfavors the reaction. The other substituents, such as CH(3)O and CH(3) groups, have also been considered in the present work, and the results show that they are favorable for the formation of six-membered-ring adducts. The calculated results have been rationalized with frontier orbital interaction and topological analysis.  相似文献   

3.
The binding energies of the first 5 H2O molecules to c-C3H3+ were determined by equilibrium measurements. The measured binding energies of the hydrated clusters of 9-12 kcal/mol are typical of carbon-based CH+...X hydrogen bonds. The ion solvation with the more polar CH3CN molecules results in stronger bonds consistent with the increased ion-dipole interaction. Ab initio calculations show that the lowest energy isomer of the c-C3H3+(H2O)4 cluster consists of a cyclic water tetramer interacting with the c-C3H3+ ion, which suggests the presence of orientational restraint of the water molecules consistent with the observed large entropy loss. The c-C3H3+ ion is deprotonated by 3 or more H2O molecules, driven energetically by the association of the solvent molecules to form strongly hydrogen bonded (H2O)nH+ clusters. The kinetics of the associative proton transfer (APT) reaction C3H3+ + nH2O --> (H2O)nH+ + C3H2* exhibits an unusually steep negative temperature coefficient of k = cT(-63+/-4) (or activation energy of -37 +/- 1 kcal mol(-1)). The behavior of the C3H3+/water system is exactly analogous to the benzene+*/water system, suggesting that the mechanism, kinetics and large negative temperature coefficients may be general to multibody APT reactions. These reactions can become fast at low temperatures, allowing ionized polycyclic aromatics to initiate ice formation in cold astrochemical environments.  相似文献   

4.
Sayin H  McKee ML 《Inorganic chemistry》2007,46(7):2883-2891
The reaction of the boron hydride B4H10 with allene was studied at the CCSD(T)/6-311+G(d)//MP2/6-31G(d) level. The mechanism is surprisingly complex with 44 transition states and several branching points located. The four carboranes and one basket that have been observed experimentally are all connected by pathways that have very similar free energies of activation. In addition, two new structures, a basket (2,4-(CH2CH2CH2)B4H8, 5a) and a "classical" structure (1,4-(Me2C)bisdiborane, 7), which might be obtained from the B4H10 + C3H4 reaction under the right conditions (hot/cold, quenched, etc.) have been identified. The first branch point in the reaction is the competition between H2 elimination from B4H10 (DeltaG(298 K) = 32.2 kcal/mol) and the hydroboration of allene by B4H10 (DeltaG(298 K) = 31.3 kcal/mol). The next branch point in the hydroboration mechanism controls the formation of 2,4-(MeCHCH2)B4H8 (1) (DeltaG(298 K) = 31.5 kcal/mol) and arachno-1,2/arachno-1,3-Me2-1-CB4H7 (8 and 8a) (DeltaG(298 K) = 34.3 kcal/mol). Another branch point in the H2-elimination mechanism controls the formation of 1-Me-2,5-micro-CH2-1-CB4H7 (29) (DeltaG(298 K) = 0.1 kcal/mol) and 2,5-micro-CHMe-1-CB4H7 (25/26) (DeltaG(298 K) = 7.3 kcal/mol). Formation of 2-Me-2,3-C2B4H7, a carborane observed in the reaction of methylacetylene with B4H10, is calculated to be blocked by a high barrier for H2 elimination. All free energies are relative to B4H10 + allene. An interesting reaction step discovered is the "reverse hydroboration step" in which a hydrogen atom is transferred from carbon back to boron, which allows a CH hydrogen to shuttle between the terminal and central carbon of allene.  相似文献   

5.
The chemical dynamics of the reaction of allyl radicals, C(3)H(5)(X(2)A(2)), with two C(3)H(4) isomers, methylacetylene (CH(3)CCH(X(1)A(1))) and allene (H(2)CCCH(2)(X(1)A(1))) together with their (partially) deuterated counterparts, were unraveled under single-collision conditions at collision energies of about 125 kJ mol(-1) utilizing a crossed molecular beam setup. The experiments indicate that the reactions are indirect via complex formation and proceed via an addition of the allyl radical with its terminal carbon atom to the terminal carbon atom of the allene and of methylacetylene (alpha-carbon atom) to form the intermediates H(2)CCHCH(2)CH(2)CCH(2) and H(2)CCHCH(2)CHCCH(3), respectively. The lifetimes of these intermediates are similar to their rotational periods but too short for a complete energy randomization to occur. Experiments with D4-allene and D4-methylacetylene verify explicitly that the allyl group stays intact: no hydrogen emission was observed but only the release of deuterium atoms from the perdeuterated reactants. Further isotopic substitution experiments with D3-methylacetylene combined with the nonstatistical nature of the reaction suggest that the intermediates decompose via hydrogen atom elimination to 1,3,5-hexatriene, H(2)CCHCH(2)CHCCH(2), and 1-hexen-4-yne, H(2)CCHCH(2)CCCH(3), respectively, via tight exit transition states located about 10-15 kJ mol(-1) above the separated products. The overall reactions were found to be endoergic by 98 +/- 4 kJ mol(-1) and have characteristic threshold energies to reaction between 105 and 110 kJ mol(-1). Implications of these findings to combustion and interstellar chemistry are discussed.  相似文献   

6.
The possible reaction product distribution and mechanism of carbon monophosphide CP with unsaturated hydrocarbons allene CH(2)CCH(2) and methylacetylene CH(3)CCH are investigated at the B3LYP/6-311+G(d,p), QCISD(T)/6-311++G(2df,2p), and G2 levels of theory. Corresponding reactants, products, intermediates, and interconversion and dissociation transition states are located on the reaction potential energy profiles. Computation results show that in the reaction of CP with CH(2)CCH(2) the dominant reaction product should be species CH(2)CCHCP. Also, we can suggest species HCCCH(2)CP as a secondary reaction product despite of only minor contribution to reaction products. In the reaction of CP with CH(3)CCH, the primary and secondary products are suggested to be two important molecules HCCCP and CH(3)CCCP, respectively. The predicted mechanisms for the two reactions are not in parallel with the reactions of CN with allene CH(2)CCH(2) and methylacetylene CH(3)CCH given in previous studies. The present calculations provide some useful information for future possible experimental isolation and observation for some interesting unsaturated carbon-phosphorus-bearing species.  相似文献   

7.
The formation and the decomposition of chemically activated cyclopentoxy radicals from the c-C5H9 + O reaction have been studied in the gas phase at room temperature. Two different experimental arrangements have been used. Arrangement A consisted of a laser-flash photolysis set up combined with quantitative Fourier transform infrared spectroscopy and allowed the determination of the stable products at 4 mbar. The c-C5H9 radicals were produced via the reaction c-C5H10 + Cl with chlorine atoms from the photolysis of CFCl3; the O atoms were generated by photolysis of SO2. Arrangement B, a conventional discharge flow-reactor with molecular beam sampling, was used to determine the rate coefficient. Here, the hydrocarbon radicals (c-C5H9, C2H5, CH2OCH3) were produced via the reaction of atomic fluorine with c-C5H10, C2H6, and CH3OCH3, respectively, and detected by mass spectrometry after laser photoionization. For the c-C5H9 + O reaction, the relative contributions of intermediate formation (c-C5H9O) and direct abstraction (c-C5H8 + OH) were found to be 68 +/- 5 and 32 +/- 4%, respectively. The decomposition products of the chemically activated intermediate could be identified, and the following relative branching fractions were obtained: c-C5H8O + H (31 +/- 2%), CH2CH(CH2)2CHO + H (40 +/- 5%), 2 C2H4 + H + CO (17 +/- 5%), and C3H4O + C2H4 + H (12 +/- 5%). Additionally, the product formation of the c-C5H8 + O reaction was studied, and the following relative yields were obtained (mol %): C2H4, 24%; C3H4O, 18%; c-C5H8O, 30%; c-C5H8O, 23%; 4-pentenal, 5%. The rate coefficient of the c-C5H9 + O reaction was determined relative to the reactions C2H5 + O and CH3OCH2 + O leading to k = (1.73 +/- 0.05) x 10(14) cm3 mol(-1) s(-1). The experimental branching fractions are analyzed in terms of statistical rate theory with molecular and transition-state data from quantum chemical calculations, and high-pressure limiting Arrhenius parameters for the unimolecular decomposition reactions of C5H9O species are derived.  相似文献   

8.
These velocity map imaging experiments characterize the photolytic generation of one of the two radical intermediates formed when OH reacts via an addition mechanism with allene. The CH2CCH2OH radical intermediate is generated photolytically from the photodissociation of 2-chloro-2-propen-1-ol at 193 nm. Detecting the Cl atoms using [2+1] resonance-enhanced multiphoton ionization evidences an isotropic angular distribution for the Cl+CH2CCH2OH photofragments, a spin-orbit branching ratio for Cl(2P1/2):Cl(2P3/2) of 0.28, and a bimodal recoil kinetic energy distribution. Conservation of momentum and energy allows us to determine from this data the internal energy distribution of the nascent CH2CCH2OH radical cofragment. To assess the possible subsequent decomposition pathways of this highly vibrationally excited radical intermediate, we include electronic structure calculations at the G3//B3LYP level of theory. They predict the isomerization and dissociation transition states en route from the initial CH2CCH2OH radical intermediate to the three most important product channels for the OH+allene reaction expected from this radical intermediate: formaldehyde+C2H3, H+acrolein, and ethene+CHO. We also calculate the intermediates and transition states en route from the other radical adduct, formed by addition of the OH to the center carbon of allene, to the ketene+CH3 product channel. We compare our results to a previous theoretical study of the O+allyl reaction conducted at the CBS-QB3 level of theory, as the two reactions include several common intermediates.  相似文献   

9.
The dynamics of the F atom reaction with propyne (CH(3)CCH) has been investigated using a universal crossed molecular beam apparatus. Two reaction channels have been clearly observed: H+C(3)H(3)F and HF+C(3)H(3). The substitution of F for H occurs mainly via a complex formation mechanism, producing reaction products with some contribution from a direct reaction mechanism. The HF product, however, appears to be dominantly forward scattered relative to the F atom beam direction, suggesting that the HF formation occurs via a direct abstraction mechanism. Branching ratios for the two observed reaction channels are also determined. The H formation channel is found to be the major reaction pathway, while the HF formation channel is also significant. From the measurements of DF versus HF products from the F atom reaction with deuterated propyne, the H atom picked up by the F atom in the reaction with normal propyne seems to come mostly from the CH(3) group. In addition, the H atom produced in the H atom formation channel appears to be mostly from the CH(3) group with some contribution from the CCH group.  相似文献   

10.
Ab initio calculations of the potential energy surface for the C3(1Sigmag+)+C2H2(1Sigmag+) reaction have been performed at the RCCSD(T)/cc-pVQZ//B3LYP/6-311G(d,p) + ZPE[B3LYP/6-311G(d,p)] level with extrapolation to the complete basis set limit for key intermediates and products. These calculations have been followed by statistical calculations of reaction rate constants and product branching ratios. The results show the reaction to begin with the formation of the 3-(didehydrovinylidene)cyclopropene intermediate i1 or five-member ring isomer i7 with the entrance barriers of 7.6 and 13.8 kcal/mol, respectively. i1 rearranges to the other C5H2 isomers, including ethynylpropadienylidene i2, singlet pentadiynylidene i3, pentatetraenylidene i4, ethynylcyclopropenylidene i5, and four- and five-member ring structures i6, i7, and i8 by ring-closure and ring-opening processes and hydrogen migrations. i2, i3, and i4 lose a hydrogen atom to produce the most stable linear isomer of C5H with the overall reaction endothermicity of approximately 24 kcal/mol. H elimination from i5 leads to the formation of the cyclic C5H isomer, HC2C3, +H, 27 kcal/ mol above C3+C2H2. 1,1-H2 loss from i4 results in the linear pentacarbon C5+H2 products endothermic by 4 kcal/mol. The H elimination pathways occur without exit barriers, whereas the H2 loss from i4 proceeds via a tight transition state 26.4 kcal/mol above the reactants. The characteristic energy threshold for the reaction under single collision conditions is predicted be in the range of approximately 24 kcal/mol. Product branching ratios obtained by solving kinetic equations with individual rate constants calculated using RRKM and VTST theories for collision energies between 25 and 35 kcal/mol show that l-C5H+H are the dominant reaction products, whereas HC2C3+H and l-C5+H2 are minor products with branching ratios not exceeding 2.5% and 0.7%, respectively. The ethynylcyclopropenylidene isomer i5 is calculated to be the most stable C5H2 species, more favorable than triplet pentadiynylidene i3t by approximately 2 kcal/mol.  相似文献   

11.
This study uses computational chemistry and statistical reaction rate theory to investigate the chemically activated reaction of diacetylene (butadiyne, C(4)H(2)) with the propargyl radical (C˙H(2)CCH) and the reaction of acetylene (C(2)H(2)) with the i-C(5)H(3) (CH(2)CCCC˙H) and n-C(5)H(3) (CHCC˙HCCH) radicals. A detailed G3SX-level C(7)H(5) energy surface demonstrates that the C(3)H(3) + C(4)H(2) and C(5)H(3) + C(2)H(2) addition reactions proceed with moderate barriers, on the order of 10 to 15 kcal mol(-1), and form activated open-chain C(7)H(5) species that can isomerize to the fulvenallenyl radical with the highest barrier still significantly below the entrance channel energy. Higher-energy pathways are available leading to other C(7)H(5) isomers and to a number of C(7)H(4) species + H. Rate constants in the large multiple-well (15) multiple-channel (30) chemically activated system are obtained from a stochastic solution of the one-dimensional master equation, with RRKM theory for microcanonical rate constants. The dominant products of the C(4)H(2) + C(3)H(3) reaction at combustion-relevant temperatures and pressures are i-C(5)H(3) + C(2)H(2) and CH(2)CCHCCCCH + H, along with several quenched C(7)H(5) intermediate species below 1500 K. The major products in the n-C(5)H(3) + C(2)H(2) reaction are i-C(5)H(3) + C(2)H(2) and a number of C(7)H(4) species + H, with C(7)H(5) radical stabilization at lower temperatures. The i-C(5)H(3) + C(2)H(2) reaction predominantly leads to C(7)H(4) + H and to stabilized C(7)H(5) products. The title reactions may play an important role in polycyclic aromatic hydrocarbon (PAH) formation in combustion systems. The C(7)H(5) potential energy surface developed here also provides insight into several other important reacting gas-phase systems relevant to combustion and astrochemistry, including C(2)H + the C(3)H(4) isomers propyne and allene, benzyne + CH, benzene + C((3)P), and C(7)H(5) radical decomposition, for which some preliminary analysis is presented.  相似文献   

12.
Ab initio calculations of the potential energy surface for the C(2)(X(1)Sigma(g)(+)) + CH(3)CCH(X(1)A(1)) reaction have been carried at the G2M level of theory. The calculations show that the dicarbon molecule in the ground singlet electronic state can add to methylacetylene without a barrier producing a three-member or a four-member ring intermediate, which can rapidly rearrange to the most stable H(3)CCCCCH isomer on the C(5)H(4) singlet surface. This isomer can then lose a hydrogen atom (H) or molecular hydrogen (H(2)) from the CH(3) group with the formation of H(2)CCCCCH and HCCCCCH, respectively. Alternatively, H atom migrations and three-member-ring closure/opening rearrangements followed by H and H(2) losses can lead to other isomers of the C(5)H(3) and C(5)H(2) species. According to the calculated energetics, the C(2)(X(1)Sigma(g)(+)) + CH(3)CCH reaction is likely to be a major source of the C(5)H(3) radicals (in particular, the most stable H(2)CCCCCH and HCCCHCCH isomers, which are relevant to the formation of benzene through the reactions with CH(3)). Among heavy-fragment product channels, only C(3)H(3) + C(2)H and c-C(3)H(2) + C(2)H(2) might compete with C(5)H(3) + H and C(5)H(2) + H(2). RRKM calculations of reaction rate constants and product branching ratios depending on the reactive collision energy showed that the major reaction products are expected to be H(2)CCCCCH + H (64-66%) and HCCCHCCH + H (34-30%), with minor contributions from HCCCCCH + H(2) (1-2%), HCCCHCC + H(2) (up to 1%), C(3)H(3) + C(2)H (up to 1%), and c-C(3)H(2) + C(2)H(2) (up to 0.1%) if the energy randomization is complete. The calculations also indicate that the C(2)(X(1)Sigma(g)(+)) + CH(3)CCH(X(1)A(1)) reaction can proceed by direct H-abstraction of a methyl hydrogen to form C(3)H(3) + C(2)H almost without a barrier.  相似文献   

13.
Ab initio calculations employing the configuration interaction method including Davidson's corrections for quadruple excitations have been carried out to unravel the dissociation mechanism of acetylene dication in various electronic states and to elucidate ultrafast acetylene-vinylidene isomerization recently observed experimentally. Both in the ground triplet and the lowest singlet electronic states of C2H2(2+) the proton migration barrier is shown to remain high, in the range of 50 kcal/mol. On the other hand, the barrier in the excited 2 3A" and 1 3A' states decreases to about 15 and 34 kcal/mol, respectively, indicating that the ultrafast proton migration is possible in these states, especially, in 2 3A", even at relatively low available vibrational energies. Rice-Ramsperger-Kassel-Marcus calculations of individual reaction-rate constants and product branching ratios indicate that if C2H(2)2+ dissociates from the ground triplet state, the major reaction products should be CCH+(3Sigma-)+H+ followed by CH+(3Pi)+CH+(1Sigma+) and with a minor contribution (approximately 1%) of C2H+(2A1)+C+(2P). In the lowest singlet state, C2H+(2A1)+C+(2P) are the major dissociation products at low available energies when the other channels are closed, whereas at Eint>5 eV, the CCH+(1A')+H+ products have the largest branching ratio, up to 70% and higher, that of CH+(1Sigma+)+CH+(1Sigma+) is in the range of 25%-27%, and the yield of C2H++C+ is only 2%-3%. The calculated product branching ratios at Eint approximately 17 eV are in qualitative agreement with the available experimental data. The appearance thresholds calculated for the CCH++H+, CH++CH+, and C2H++C+ products are 34.25, 35.12, and 34.55 eV. The results of calculations in the presence of strong electric field show that the field can make the vinylidene isomer unstable and the proton elimination spontaneous, but is unlikely to significantly reduce the barrier for the acetylene-vinylidene isomerization and to render the acetylene configuration unstable or metastable with respect to proton migration.  相似文献   

14.
The reactions of Y (a2D), Zr (a3F), Nb (a6D), Mo (a7S), and electronically excited-state Mo* (a5S) with propyne (methylacetylene) and 2-butyne (1,2-dimethylacetylene) were investigated using crossed molecular beams. For all of the metals studied, reactions with propyne led to H2 elimination, forming MC3H2. For Y + propyne, C-C bond cleavage forming YCCH + CH3 also was observed, with an energetic threshold in good agreement with an earlier determination of D0(Y-CCH). For Y + 2-butyne, three reactive channels were observed: YC4H4 + H2, YC3H3 + CH3, and YC3H2 + CH4. The C-C bond cleavage products accounted for 21 and 27% of the total products at Ecoll = 69 and 116 kJ/mol, respectively. For Zr and Nb reactions with 2-butyne, competition between H2 and CH4 elimination was observed, with C-C bond cleavage accounting for 12 and 4% of the total product signal at Ecoll = 71 kJ/mol, respectively. For reactions of Mo and Mo* with 2-butyne, only H2 elimination was observed. The similarity between reactions involving two isomeric species, propyne and allene, suggests that H atom migration is facile in these systems.  相似文献   

15.
The reaction of propene (CH(3)CH═CH(2)) with hydrogen atoms has been investigated in a heated single-pulsed shock tube at temperatures between 902 and 1200 K and pressures of 1.5-3.4 bar. Stable products from H atom addition and H abstraction have been identified and quantified by gas chromatography/flame ionization/mass spectrometry. The reaction for the H addition channel involving methyl displacement from propene has been determined relative to methyl displacement from 1,3,5-trimethylbenzene (135TMB), leading to a reaction rate, k(H + propene) → H(2)C═CH(2) + CH(3)) = 4.8 × 10(13) exp(-2081/T) cm(3)/(mol s). The rate constant for the abstraction of the allylic hydrogen atom is determined to be k(H + propene → CH(2)CH═CH(2) + H(2)) = 6.4 × 10(13) exp(-4168/T) cm(3)/(mol s). The reaction of H + propene has also been directly studied relative to the reaction of H + propyne, and the relationship is found to be log[k(H + propyne → acetylene + CH(3))/k(H + propene → ethylene + CH(3))] = (-0.461 ± 0.041)(1000/T) + (0.44 ± 0.04). The results showed that the rate constant for the methyl displacement reaction with propene is a factor of 1.05 ± 0.1 larger than that for propyne near 1000 K. The present results are compared with relevant earlier data on related compounds.  相似文献   

16.
Ab initio modified Gaussian-2 G2M(RCC,MP2) calculations have been performed for various isomers and transition states on the singlet C4H4 potential energy surface. The computed relative energies and molecular parameters have then been used to calculate energy-dependent rate constants for different isomerization and dissociation processes in the C4H4 system employing Rice-Ramsperger-Kassel-Marcus theory and to predict branching ratios of possible products of the C2(1Sigmag+)+C2H4, C(1D)+H2CCCH2, and C(1D)+H3CCCH reactions under single-collision conditions. The results show that C2 adds to the double C=C bond of ethylene without a barrier to form carbenecyclopropane, which then isomerizes to butatriene by a formal C2 "insertion" into the C-C bond of the C2H4 fragment. Butatriene can rearrange to the other isomers of C4H4, including allenylcarbene, methylenecyclopropene, vinylacetylene, methylpropargylene, cyclobutadiene, tetrahedrane, methylcyclopropenylidene, and bicyclobutene. The major decomposition products of the chemically activated C4H4 molecule formed in the C2(1Sigmag+)+C2H4 reaction are calculated to be acetylene+vinylidene (48.6% at Ecol = 0) and 1-buten-3-yne-2-yl radical [i-C4H3(X2A'), H2C=C=C=CH*]+H (41.3%). As the collision energy increases from 0 to 10 kcal/mol, the relative yield of i-C4H3+H grows to 52.6% and that of C2H2+CCH2 decreases to 35.5%. For the C(1D)+allene reaction, the most important products are also i-C4H3+H (55.2%) and C2H2+CCH2 (30.1%), but for C(1D)+methylacetylene, which accesses a different region of the C4H4 singlet potential energy surface, the calculated product branching ratios differ significantly: 65%-69% for i-C4H3+H, 18%-14% for C2H2+CCH2, and approximately 8% for diacetylene+H2.  相似文献   

17.
This paper reports the first quantitative ab initio prediction of the disproportionation/combination ratio of alkyl+alkyl reactions using CH3+C2H5 as an example. The reaction has been investigated by the modified Gaussian-2 method with variational transition state or Rice-Ramsperger-Kassel-Marcus calculations for several channels producing (1) CH4+CH2CH2, (2) C3H8, (3) CH4CH3CH, (4) H2+CH3CHCH2, (5) H2+CH3CCH3, and (6) C2H6+CH2 by H-abstraction and association/decomposition mechanisms through singlet and triplet potential energy paths. Significantly, the disproportionation reaction (1) producing CH4+C2H4 was found to occur primarily by the lowest energy path via a loose hydrogen-bonding singlet molecular complex, H3CHC2H4, with a 3.5 kcal/mol binding energy and a small decomposition barrier (1.9 kcal/mol), instead of a direct H-abstraction process. Bimolecular reaction rate constants for the formation of the above products have been calculated in the temperature range 300-3000 K. At 1 atm, formation of C3H8 is dominant below 1200 K. Over 1200 K, the disproportionation reaction becomes competitive. The sum of products (3)-(6) accounts for less than 0.3% below 1500 K and it reaches around 1%-4% above 2000 K. The predicted rate constant for the disproportionation reaction with multiple reflections above the complex well, k1=5.04 x T(0.41) exp(429/T) at 200-600 K and k1=1.96 x 10(-20) T(2.45) exp(1470/T) cm3 molecule(-1) s(-1) at 600-3000 K, agrees closely with experimental values. Similarly, the predicted high-pressure rate constants for the combination reaction forming C3H8 and its reverse dissociation reaction in the temperature range 300-3000 K, k2(infinity)=2.41 x 10(-10) T(-0.34) exp(259/T) cm3 molecule(-1) s(-1) and k(-2)(infinity)=8.89 x 10(22) T(-1.67)exp(-46 037/T) s(-1), respectively, are also in good agreement with available experimental data.  相似文献   

18.
Woodcock et al. [J. Phys. Chem. A 2002, 106, 11923] pointed out that no density functional was able to obtain the correct sign of the relative energies of the allene and propyne isomers of C3H4 and that density functional theory (DFT) predicts that poly-ynes are insufficiently stabilized over cumulenes for higher homologues. In the present work, we show that the recent M05 density functional predicts the correct ordering of allene and propyne and gives a mean unsigned error (MUE) of only 1.8 kcal/mol for the relative energies of the two isomers of C3H4, C5H4, and C7H4. Two other recent functionals, M05-2X and PWB6K, also give reasonably low MUEs, 2.7 and 3.0 kcal/mol, respectively, as compared to 6.2 kcal/mol for the popular B3LYP functional. Another challenging problem for density functionals has been a tendency to overpolarize conjugated pi systems. We test this here by considering proton affinities of conjugated polyenes and conjugated Schiff bases. Again M05-2X performs quite well, with MUEs of 2.1 and 3.9 kcal/ mol, respectively, as compared to 5.8 and 5.9 kcal/mol for B3LYP. Averaged over the three problems, M05-2X has a MUE of 3.0 kcal/mol, the BMK functional of Boese et al. has an MUE of 3.2 kcal/mol, and M05 has an MUE of 5.1 kcal/mol. Twenty-two other tested functionals have MUEs of 5.2-8.1 kcal/mol averaged over the three test problems. Both M05 and M05-2X do quite well, compared to other density functionals, for torsion potentials in butadiene and styrene, and M05 does very well for bond length alternation in conjugated polyenes. Since the M05 functional has broad accuracy for main group and transition metal chemistry and M05-2X has broad accuracy for main group chemistry, we conclude that significant progress is being made in improving the performance of DFT across a wide range of problem types.  相似文献   

19.
Crossed molecular beams experiments have been utilized to investigate the reaction dynamics between two closed shell species, i.e. the reactions of tricarbon molecules, C(3)(X(1)Sigma(g)(+)), with allene (H(2)CCCH(2); X(1)A(1)), and with methylacetylene (CH(3)CCH; X(1)A(1)). Our investigations indicated that both these reactions featured characteristic threshold energies of 40-50 kJ mol(-1). The reaction dynamics are indirect and suggested the reactions proceeded via an initial addition of the tricarbon molecule to the unsaturated hydrocarbon molecules forming initially cyclic reaction intermediates of the generic formula C(6)H(4). The cyclic intermediates isomerize to yield eventually the acyclic isomers CH(3)CCCCCH (methylacetylene reaction) and H(2)CCCCCCH(2) (allene reaction). Both structures decompose via atomic hydrogen elimination to form the 1-hexene-3,4-diynyl-2 radical (C(6)H(3); H(2)CCCCCCH). Future flame studies utilizing the Advanced Light Source should therefore investigate the existence of 1-hexene-3,4-diynyl-2 radicals in high temperature methylacetylene and allene flames. Since the corresponding C(3)H(3), C(4)H(3), and C(5)H(3) radicals have been identified via their ionization potentials in combustion flames, the existence of the C(6)H(3) isomer 1-hexene-3,4-diynyl-2 can be predicted as well.  相似文献   

20.
We investigated the dynamics of isomerization and multi-channel dissociation of propenal (CH(2)CHCHO), methyl ketene (CH(3)CHCO), hydroxyl propadiene (CH(2)CH(2)CHOH), and hydroxyl cyclopropene (cyclic-C(3)H(3)-OH) in the ground potential-energy surface using quantum-chemical calculations. Optimized structures and vibrational frequencies of molecular species were computed with method B3LYP∕6-311G(d,p). Total energies of molecules at optimized structures were computed at the CCSD(T)∕6-311+G(3df,2p) level of theory. We established the potential-energy surface for decomposition to CH(2)CHCO + H, CH(2)CH + HCO, CH(2)CH(2)∕CH(3)CH + CO, CHCH∕CH(2)C + H(2)CO, CHCCHO∕CH(2)CCO + H(2), CHCH + CO + H(2), CH(3) + HCCO, CH(2)CCH + OH, and CH(2)CC∕cyclic-C(3)H(2) + H(2)O. Microcanonical rate coefficients of various reactions of trans-propenal with internal energies 148 and 182 kcal mol(-1) were calculated using Rice-Ramsperger-Kassel-Marcus and Variational transition state theories. Product branching ratios were derivable using numerical integration of kinetic master equations and the steady-state approximation. The concerted three-body dissociation of trans-propenal to fragments C(2)H(2) + CO + H(2) is the prevailing channel in present calculations. In contrast, C(3)H(3)O + H, C(2)H(3) + HCO and C(2)H(4) + CO were identified as major channels in the photolysis of trans-propenal. The discrepancy between calculations and experiments in product branching ratios indicates that the three major photodissociation channels occur mainly on an excited potential-energy surface whereas the other channels occur mainly on the ground potential-energy surface. This work provides profound insight in the mechanisms of isomerization and multichannel dissociation of the system C(3)H(4)O.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号