首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
An optical atomic clock scheme is proposed that utilizes two lasers to establish coherent coupling between the 5s2 1S0 ground state of 88Sr and the first excited state, 5s5p 3P0. The coupling is mediated by the broad 5s5p 1P1 state, exploiting the phenomenon of electromagnetically induced transparency. The effective linewidth of the clock transition can be chosen at will by adjusting the laser intensity. By trapping the 88Sr atoms in an optical lattice, long interaction times with the two lasers are ensured; Doppler and recoil effects are eliminated. Based on a careful analysis of systematic errors, a clock accuracy of better than 2 x 10(-17) is expected.  相似文献   

2.
We report on the Lamb-Dicke spectroscopy of the doubly forbidden (6s(2))(1)S(0)?(6s6p)(3)P(0) transition in (199)Hg atoms confined to a vertical 1D optical lattice. With lattice trapping of ?10(3) atoms and a 265.6 nm probe laser linked to the LNE-SYRTE primary frequency reference we have determined the center frequency of the transition for a range of lattice wavelengths and at two lattice trap depths. We find the Stark-free (magic) wavelength to be 362.53(0.21) nm-essential knowledge for future use of this line in a clock with anticipated 10(-18) range accuracy. We also present evidence of the laser excitation of a Wannier-Stark ladder of states in a lattice of well depth 10E(R).  相似文献   

3.
We measure the frequency of the 5s21S0-5s5p 3P0 narrowline clock transition at 236.5 nm, for a single, trapped and laser cooled 115In+ ion. In the experiment, an ultra-narrow linewidth laser (<1.34 Hz at 3 s integration time) is used to interrogate the clock transition for high resolution spectroscopy. A linewidth of 43 Hz of the clock transition is observed. The uncertainty of the line centroid is 18 Hz, leading to a fractional uncertainty of 1.4×10-14. The frequency is measured by using an optical frequency comb referenced to a cesium clock. The transition frequency is found to be 1, 267, 402, 452, 901.265 (256) kHz, averaged over 13 days of separate measurement. The accuracy of 2.35×10-13 is due to the reference cesium clock calibrated against UTC time. We discuss ways for further improvements.  相似文献   

4.
An ultrastable optical clock based on neutral atoms trapped in an optical lattice is proposed. Complete control over the light shift is achieved by employing the 5s(2) 1S0-->5s5p 3P0 transition of 87Sr atoms as a "clock transition." Calculations of ac multipole polarizabilities and dipole hyperpolarizabilities for the clock transition indicate that the contribution of the higher-order light shifts can be reduced to less than 1 mHz, allowing for a projected accuracy of better than 10(-17).  相似文献   

5.
Optical lattice induced light shifts in an yb atomic clock   总被引:1,自引:0,他引:1  
We present an experimental study of the lattice-induced light shifts on the (1)S(0) --> (3)P(0) optical clock transition (nu(clock) approximately 518 THz) in neutral ytterbium. The "magic" frequency nu(magic) for the 174Yb isotope was determined to be 394 799 475(35) MHz, which leads to a first order light shift uncertainty of 0.38 Hz. We also investigated the hyperpolarizability shifts due to the nearby 6s6p(3)P(0) --> 6s8p(3)P(0), 6s8p(3)P(2), and 6s5f(3)F(2) two-photon resonances at 759.708, 754.23, and 764.95 nm, respectively. By measuring the corresponding clock transition shifts near these two-photon resonances, the hyperpolarizability shift was estimated to be 170(33) mHz for a linear polarized, 50 microK deep, lattice at the magic wavelength. These results indicate that the differential polarizability and hyperpolarizability frequency shift uncertainties in a Yb lattice clock could be held to well below 10(-17).  相似文献   

6.
We report the frequency measurement with an accuracy in the 100 kHz range of several optical transitions of atomic Sr: 1S0-3P1 at 689 nm, 3P1-3S1 at 688 nm and 3P0-3S1 at 679 nm. Measurements are performed with a frequency chain based on a femtosecond laser referenced to primary frequency standards. They allowed the indirect determination with a 70 kHz uncertainty of the frequency of the doubly forbidden transition of 87Sr at 698 nm and in a second step its direct observation. Frequency measurements are performed for 88Sr and 87Sr, allowing the determination of 3P0, 3P1 and 3S1 isotope shifts, as well as the 3S1 hyperfine constants.  相似文献   

7.
We report the direct excitation of the highly forbidden (6s2) 1S0 <--> (6s6p) 3P0 optical transition in two odd isotopes of neutral ytterbium. As the excitation laser frequency is scanned, absorption is detected by monitoring the depletion from an atomic cloud at approximately 70 microK in a magneto-optical trap. The measured frequency in 171Yb (F=1/2) is 518,295,836,591.6 +/- 4.4 kHz. The measured frequency in 173Yb (F=5/2) is 518,294,576,847.6 +/- 4.4 kHz. Measurements are made with a femtosecond-laser frequency comb calibrated by the National Institute of Standards and Technology cesium fountain clock and represent nearly a 10(6)-fold reduction in uncertainty. The natural linewidth of these J=0 to J=0 transitions is calculated to be approximately 10 mHz, making them well suited to support a new generation of optical atomic clocks based on confinement in an optical lattice.  相似文献   

8.
丛东亮  王叶兵  许朋  常宏 《光学学报》2012,32(7):704001-52
锶原子单态和三重态间的互组跃迁(5s2)1S0-(5s5p)3P1辐射率远小于一般的电偶极跃迁,共振跃迁荧光信号微弱。介绍了一种应用于探测该互组跃迁荧光谱的直流偏置探测器。该探测器选用极低输入偏置电流运算放大器作为前置放大,具有信噪比高、增益高、偏置可调等优点。此探测器探测增益为106 V/W量级,-3dB带宽为1MHz。实验中利用该探测器对锶原子互组跃迁(5s2)1S0-(5s5p)3P1微弱共振荧光进行探测,获得信噪比很好的共振荧光谱,且无直流偏置,并由此获得高信噪比的鉴频曲线。应用该探测器观测到了饱和荧光谱线以及对应的鉴频曲线,可用于689nm激光锁频,应用于锶光钟系统。  相似文献   

9.
Yuan-Fei Wei 《中国物理 B》2022,31(8):83102-083102
The dynamic polarizabilities of ${\rm 3s}^2\,^1{\rm S}_0$ and ${\rm 3s}{\rm 3p}\,^3{\rm P}_0^{\rm o}$ states of Al$^+$ are calculated using the hybrid configuration interaction and many-body perturbation theory method, and multiconfiguration Dirac-Hartree-Fock method in this work. Five ultraviolet magic wavelengths for the Al$^+$ clock transition ${\rm 3s}^2\,^1{\rm S}_0$-${\rm 3s3p}\,^3{\rm P}_0^{\rm o}$ are predicted. Although the suitable lasers are not available presently, the potential precision measurement on these magic wavelengths for the Al$^+$ clock transition would be used to extract the ratios of several certain transition matrix elements with high accuracy, and then help to improve the precision and reliability of the estimate of the BBR shift of the Al$^+$ clock transition. The differential dynamic polarizabilities at certain wavelengths are evaluated, which are useful to assess the ac Stark shift of the Al$^+$ clock transition frequency and helpful in the clock experiments to suppress the ac Stark shift of the clock transition as possible as it can.  相似文献   

10.
We present an assessment of the (6s2) (1)S0 ? (6s6p)(3)P0 clock transition frequency in 199Hg with an uncertainty reduction of nearly 3 orders of magnitude and demonstrate an atomic quality factor Q of ~10(14). The 199Hg atoms are confined in a vertical lattice trap with light at the newly determined magic wavelength of 362.5697±0.0011 nm and at a lattice depth of 20E(R). The atoms are loaded from a single-stage magneto-optical trap with cooling light at 253.7 nm. The high Q factor is obtained with an 80 ms Rabi pulse at 265.6 nm. We find the frequency of the clock transition to be 1,128,575,290,808,162.0±6.4(syst)±0.3(stat) Hz (i.e., with fractional uncertainty=5.7×10(-15)). Neither an atom number nor second order Zeeman dependence has yet been detected. Only three laser wavelengths are used for the cooling, lattice trapping, probing, and detection.  相似文献   

11.
We report, for the first time, laser spectroscopy of the 1S0-->3P0 clock transition in 27Al+. A single aluminum ion and a single beryllium ion are simultaneously confined in a linear Paul trap, coupled by their mutual Coulomb repulsion. This coupling allows the beryllium ion to sympathetically cool the aluminum ion and also enables transfer of the aluminum's electronic state to the beryllium's hyperfine state, which can be measured with high fidelity. These techniques are applied to measure the clock transition frequency nu=1,121,015,393,207,851(6) Hz. They are also used to measure the lifetime of the metastable clock state tau=20.6+/-1.4 s, the ground state 1S0 g factor gS=-0.000,792,48(14), and the excited state 3P0 g factor gP=-0.001,976,86(21), in units of the Bohr magneton.  相似文献   

12.
We report a frequency measurement of the 1S0-3P0 transition of 87Sr atoms in an optical lattice clock. The frequency is determined to be 429 228 004 229 879(5) Hz with a fractional uncertainty that is comparable to state-of-the-art optical clocks with neutral atoms in free fall. The two previous measurements of this transition were found to disagree by about 2 x 10(-13), i.e., almost 4 times the combined error bar and 4 to 5 orders of magnitude larger than the claimed ultimate accuracy of this new type of clocks. Our measurement is in agreement with one of these two values and essentially resolves this discrepancy.  相似文献   

13.
With ultracold 87Srconfined in a magic wavelength optical lattice, we present the most precise study (2.8 Hz statistical uncertainty) to date of the 1S0-3P0 optical clock transition with a detailed analysis of systematic shifts (19 Hz uncertainty) in the absolute frequency measurement of 429 228 004 229 869 Hz. The high resolution permits an investigation of the optical lattice motional sideband structure. The local oscillator for this optical atomic clock is a stable diode laser with its hertz-level linewidth characterized by an octave-spanning femtosecond frequency comb.  相似文献   

14.
The electric-quadrupole moment of the (199)Hg+ 5d9 6s2 (2)D(5/2) state is measured to be theta(D,5/2) = -2.29(8) x 10(-40) C m2. This value was determined by measuring the frequency of the (199)Hg+ 5d10 6s (2)S(1/2) --> 5d9 6s2 (2)D(5/2) optical clock transition for different applied electric-field gradients. An isolated, mechanically stable optical cavity provides a frequency reference for the measurement. We compare the results with theoretical calculations and discuss the implications for the accuracy of an atomic clock based upon this transition. We now expect that the frequency shift caused by the interaction of the quadrupole moment with stray electric-field gradients will not limit the accuracy of the Hg+ optical clock at the 10(-18) level.  相似文献   

15.
We report on an absolute frequency measurement of the hydrogen 1S-2S two-photon transition in a cold atomic beam with an accuracy of 1.8 parts in 10(14). Our experimental result of 2 466 061 413 187 103(46) Hz has been obtained by phase coherent comparison of the hydrogen transition frequency with an atomic cesium fountain clock. Both frequencies are linked with a comb of laser frequencies emitted by a mode locked laser.  相似文献   

16.
With a fiber-broadened, femtosecond-laser frequency comb, the 76-THz interval between two laser-cooled optical frequency standards was measured with a statistical uncertainty of 2x10(-13) in 5 s , to our knowledge the best short-term instability thus far reported for an optical frequency measurement. One standard is based on the calcium intercombination line at 657 nm, and the other, on the mercury ion electric-quadrupole transition at 282 nm. By linking this measurement to the known Ca frequency, we report a new frequency value for the Hg(+) clock transition with an improvement in accuracy of ~10(5) compared with its best previous measurement.  相似文献   

17.
By varying the density of an ultracold 88Sr sample from 10(9) to>10(12) cm(-3), we make the first definitive measurement of the density-related frequency shift and linewidth broadening of the 1S0-3P1 optical clock transition in an alkaline earth system. In addition, we report the most accurate measurement to date of the 88Sr 1S0-3P1 optical clock transition frequency. Including a detailed analysis of systematic errors, the frequency is [434 829 121 312 334+/-20(stat)+/-33(syst)] Hz.  相似文献   

18.
We report on an improved absolute frequency measurement of the 5s 2 1 S 00-5s5p 3 P 0 narrowline clock transition at 236.5 nm, for a single, trapped, and laser-cooled 115In ion. Using a narrowline laser as the local oscillator, a linewidth of 43 Hz for the transition is resolved. The uncertainty of the transition frequency’s centroid is 18 Hz, leading to a fractional uncertainty of 1.4 × 10−14. For absolute frequency measurement, we use an optical frequency comb locked to a cesium clock as the reference. The transition frequency is found to be 1267402452900967(63) Hz, averaged over 13 days of separate measurements. The accuracy is about 5.0 × 10−14. We discuss possibilities for further improvement. Original Text ? Astro, Ltd., 2007.  相似文献   

19.
We report the direct frequency measurement of the visible 5s(2) 1S0-5s5p 3P1 intercombination line of strontium that is considered a possible candidate for a future optical-frequency standard. The frequency of a cavity-stabilized laser is locked to the saturated fluorescence in a thermal Sr atomic beam and is measured with an optical-frequency comb generator referenced to the SI second through a global positioning system signal. The 88Sr transition is measured to be at 434 829 121 311 (10) kHz. We measure also the 88Sr-86Sr isotope shift to be 163 817.4 (0.2) kHz.  相似文献   

20.
A frequency-stabilized 556-nm laser is an essential tool for experimental studies associated with 1 S 0-3 P 1 intercombination transition of ytterbium (Yb) atoms.A 556-nm laser light using a single-pass second harmonic generation (SHG) is obtained in a periodically poled MgO:LiNbO 3 (PPLN) crystal pumped by a fiber laser at 1111.6 nm.A robust frequency stabilization method which facilitates the control of laser frequency with an accuracy better than the natural linewidth (187 kHz) of the intercombination line is developed.The short-term frequency jitter is reduced to less than 100 kHz by locking the laser to a home-made reference cavity.A slow frequency drift is sensed by the 556-nm fluorescence signal of an Yb atomic beam excited by one probe beam and is reduced to less than 50-kHz by a computer-controlled servo system.The laser can be stably locked for more than 5 h.This frequency stabilization method can be extended to other alkaline-earth-like atoms with similar weak intercombination lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号