首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Bulk nanocrystalline ingot iron (BNII) was produced by the severe rolling technique. The corrosion behaviors of BNII and as-received conventional polycrystalline ingot iron (CPII) in 1 M HCl solution were investigated by potentiodynamic polarization tests, electrochemical impedance spectroscopy measurement, and immersion tests at room temperature. For BNII, the anodic dissolution process is inhibited, but the cathodic process is enhanced. The corrosion current and average corrosion rate of BNII are 0.479 and 0.391 those of CPII, respectively. The resistance of the charge transfer of BNII is about 1.59 times higher than that of CPII. These results indicate that the corrosion resistance of BNII is improved in comparison with CPII.  相似文献   

2.
The corrosion properties of bulk nanocrystalline ingot iron (BNII) fabricated from conventional polycrystalline ingot iron (CPII) by severe rolling were investigated by means of immersion test, potentiodynamic polarization (PDP), electrochemical impedance spectroscopy (EIS) tests, and scanning electron microscopy (SEM) observation. These experimental results indicate that BNII possesses excellent corrosion resistance in comparison with CPII in acidic sulfate solution at room temperature. It may mainly result from different surface microstructures between CPII and BNII. However, the corrosion resistance of nanocrystalline materials is usually degraded because of their metastable microstructure nature, and the residual stress in nanocrystalline materials also can result in degradation of corrosion resistance according to the traditional point of view.  相似文献   

3.
Nanostructured cobalt (Co) and cobalt-iron (CoFe) alloy coatings were electrodeposited from sulfate solutions in the presence and absence of saccharin. The effects of saccharin on the corrosion behavior of Co and CoFe alloy coatings were investigated using the electrochemical quartz crystal microbalance (EQCM) technique coupled with cyclic voltammetry (CV) measurements. Saccharin was added to the electrolyte as a grain refiner and brightener. Interestingly, opposite corrosion behaviors were found for all nanostructured coatings in 0.1 M H2SO4 and 0.1 M NaOH. The use of saccharin as an additive in the plating solution accelerated the anodic reaction for all deposits in acidic medium. The mass decreases while dissolution rate increased with higher saccharin concentration. Meanwhile, formation of a thick passive film on the Co electrode surface were enhanced while a hindering effect was observed for CoFe alloy coatings deposited in the presence of saccharin in alkaline solution. The anodic and cathodic curves obtained from potentiodynamic polarization experiments were also in agreement with the EQCM results.  相似文献   

4.
通过集气法、极化曲线和电化学阻抗谱研究了在铝中添加合金元素钙对其在碱 溶液中的缓蚀作用及其与酒石酸盐的协同效应。实验结果表明,铝电极的腐蚀速率 随钙含量的增加而减小。溶液中不含酒石酸盐时,钙对电极反应的阴极过程有显著 的抑制作用,对阳极过程作用不明显;而当溶液中含有酒石酸盐时,阴极过程和阳 极过程均被显著抑制。阻抗谱的解析结果还表明,钙离子或酒石酸钙络离子是通过 减小反应物在活性位上的反应速率而起缓蚀作用的,它们可能属于界面型缓蚀剂而 非成相型缓蚀剂。  相似文献   

5.
The corrosion process commonly limits the use of copper in practical applications. The use of corrosion inhibitors is one of the effective methods to reduce the corrosion rate of copper. In this research, the inhibition effect of acridine orange (3,6-bis(dimethylamine)acridine) (AcO) for the protection of copper in 0.5 ?M ?H2SO4 solution was studied. For this aim, the change of open circuit potential with exposure time (Eocp-t), electrochemical impedance spectroscopy (EIS), linear polarization resistance (LPR), anodic and cathodic potentiodynamic polarization measurements (PP) and chronoamperometry (CA) techniques were used. Some quantum chemical parameters (EHOMO, ELUMO and dipole moment) were calculated and discussed. The AcO film formed over the copper surface was examined by SEM, EDX, AFM and contact angle measurements. The electrochemical data showed that AcO is an effective corrosion inhibitor even at low concentrations (ranging between 99.1% and %99.4 ?at concentrations from 0.01 ?mM to 1 ?mM). The corrosion rate of copper decreases in the presence of the inhibitor by reducing both anodic and cathodic rates, which is depended on its concentration. This compound behaves as mixed-type corrosion inhibitors with predominantly cathodic type. Its adsorption on the copper surface obeys Langmuir adsorption isotherm. The value of adsorption equilibrium constant (Kads) and the standard free energy of adsorption were ΔGads 1.298 x 103 ?M?1 and -27.71 ?kJ/mol in the case of 0.5 ?M ?H2SO4 solution containing 1.0 ?mM AcO, which shows the adsorption is high and spontaneous. The adsorbed inhibitor film over the metal increase contact angle of the surface, which suggests the more hydrophobic properties of the surface are increasing coming from the orientation of hydrophobic sites to the electrolyte. The zero charge potential (Epzc) studies showed that the surface charge of the metal is positive in the corrosive media containing the inhibitor. Quantum chemical calculations showed that the binding of inhibitor molecules to the metal surface takes place through N atoms of the inhibitor.  相似文献   

6.
稀酸溶液中氯离子对工业纯铁的腐蚀机理研究   总被引:3,自引:0,他引:3  
关于铁在酸性溶液中的腐蚀电化学行为,对不合特性吸附离子的体系而言,溶液PH值的改变对铁的阳极溶解起着重要作用,表明0*一参与了钱的阳极溶解过程k’].当向体系中引入具有特性吸附能力的执离子时,可以引起腐蚀中铁的腐蚀电位、Tdel斜率以及腐蚀电流密度和反应级教等诸多数的变化问,表明CI一也参与了铁腐蚀的电化学过程问.由于介质体系、电板材料及实验条件的差异,不同的研究者所获得的实验结果也不同卜和.然而,这些机理所讨论的均为把高于对阳极过程的影响,对氛离子存在时是否影响阴极析氢过程较少有实验证明.并且,对阳极…  相似文献   

7.
The inhibitory action of an extract of Hemidesmus indicus leaves as a potential corrosion inhibitor for steel in H2SO4 solutions was examined using conventional mass loss, gasometric techniques, electrochemical polarisations and electrochemical impedance spectroscopy. The results revealed that the extract of Hemidesmus indicus leaves performed well as an inhibitor for the corrosion of the metal employed in an accelerating medium. The inhibition efficiencies for all the experimental techniques employed increased with increasing the concentration of the plant extract but decreased with a rise in temperature. Both the cathodic hydrogen evolution and the anodic dissolution of mild steel were inhibited, hence the active molecule of the extract studied acted as a mixed-type corrosion inhibitor.  相似文献   

8.
The inhibitive effect of 2-cyano-3-hydroxy-4(Ar)-5-anilino thiophene derivatives on the corrosion of 304 stainless steel (SS) in 3 M HCl solution has been investigated by weight loss, galvanostatic polarization techniques, and potentiodynamic anodic polarization in 3.5 % NaCl. The results indicate that these compounds act as inhibitors retarding the anodic and cathodic corrosion reactions. The presence of inhibitors does not change the mechanism of either hydrogen evolution reaction or SS dissolution. The activation energy and some thermodynamic parameters are calculated and discussed. These compounds are mixed-type inhibitors in the acid solution, and their adsorption on the SS surface is found to obey the Temkin adsorption isotherm. The results suggest that the percentage inhibition of these thiophene derivatives increases with increasing inhibitor concentration and decreases with increasing temperature. The synergistic parameter (S) was calculated and found to have a value greater than unity, indicating that the enhanced inhibition efficiency caused by the addition of I?, SCN?, and Br? is only due to a synergistic effect. The relationship between molecular structure and inhibition efficiency was elucidated by quantum-chemical calculations using semi-empirical self-consistent field (SCF) methods.  相似文献   

9.
采用失重法、电化学法、X射线光电子能谱(XPS)和扫描电子显微镜(SEM)研究了0.5 mol/L NaCl溶液中,山梨酸钾(PS)与Zn2+对Q235钢的缓蚀协同效应。 失重实验结果表明,在0.5 mol/L NaCl溶液中,PS对Q235钢具有一定的缓蚀效果,缓蚀效率随PS质量浓度的增加而增大,当添加PS的质量浓度为25.0 g/L时,最大缓蚀效率仅为38.37%,而PS与Zn2+复配后存在显著的缓蚀协同作用,缓蚀效率高达91.03%。 动电势极化结果表明,PS与Zn2+混合物可同时抑制Q235钢的阴、阳极反应,属于阳极型缓蚀剂。 阻抗谱表明,该混合物可在电极表面形成致密的保护膜。 XPS分析证明保护膜是由PS、铁的氧化物/氢氧化物和Zn(OH)2沉淀组成。  相似文献   

10.
The inhibitive effect of the investigated compounds (ethanolamine (I), diethanolamine (II) and triethanolamine (III)) on the corrosion behavior of aluminum in 1 M H3PO4 solution using weight loss, galvanostatic polarization and quantum chemical calculation methods was studied. The inhibition efficiency was found to depend on type and concentration of the additives and also on temperature. The effect of addition of halide ions to various concentrations of these compounds has also been studied. The apparent activation energy (Ea) and other thermodynamic parameters for the corrosion process have also been calculated and discussed. The galvanostatic polarization data indicated that these inhibitors were of mixed-type. The slopes of the cathodic and anodic Tafel lines (βc and βa) are approximately constant and independent of the inhibitor concentration. The adsorption of these compounds on aluminum surface has been found to obey the Freundlich adsorption isotherm. Some quantum chemical parameters and Mulliken charge densities for investigated compounds were calculated by the AM1 semi-empirical method to provide further insight into the mechanism of inhibition of the corrosion process. The theoretical results are then compared with experimental data.  相似文献   

11.
The analytical properties of the cathodic peak of tin(II) reduction and the anodic peak of iron(II) oxidation on a graphite electrode were studied with the electrode surface mechanically renewed directly in a solution before applying a potential in each measurement. The influence of the organic components of the phenolsulfonic tin-plating electrolyte on the cathodic current of tin(II) reduction and anodic current of iron(II) oxidation was studied. A dc voltammetric method was proposed for determining tin(II) directly in the phenolsulfonic tin-plating electrolyte, and iron(II) after the electrolyte is diluted tenfold with a 0.5M H2SO4 supporting solution.  相似文献   

12.
应用电化学阻抗谱(EIS)研究碳钢在N-甲基二乙醇胺(MDEA)介质中的腐蚀行为.实验表明,未经预阴极活化处理的碳钢表面存在氧化膜,溶解氧促使它腐蚀速率增大,经活化处理去除氧化膜后则相反.在不含热稳定性盐(HSS)的MDEA溶液中,碳钢的腐蚀性随MDEA浓度的增加呈先上升后下降趋势;而在HSS高含量的溶液中,其腐蚀性则随MDEA浓度的增加而单调下降.在含有HSS模拟溶液中,碳钢的阳极极化EIS随极化电位由低到高分别出现感抗、负阻抗以及Warburg阻抗响应等特征,对应于孔蚀、活化状态向钝化状态过渡以及进入钝化的趋势,腐蚀反应的阴极过程表现为电化学反应和扩散传质混合控制,阳极过程为电化学反应控制.  相似文献   

13.

This research deals with the inhibition activity of glutathione in 0.5 M HCl on the corrosion behavior of 6061Al-SiC(p) composite. Glutathione is an eco-friendly water-soluble inhibitor. Polarization results reveal the cathodic inhibitor behavior of glutathione (Gt). The inhibition performance of Gt increases by increasing its concentration and lowering the medium temperature. The decrease in the corrosion current density and increase in inhibition efficiency on increasing Gt concentration reveal the attenuation of composite corrosion. Experimental results indicate the mixed adsorption with predominantly physisorption of Gt molecules adsorption on the composite surface following Langmuir adsorption isotherm. The impedance measurements indicate the rise in polarization resistance with an increase in Gt concentration, showing the control of composite corrosion. The surface analysis of the corroded and inhibited composite samples using a scanning electron microscope and atomic force microscope supports Gt molecules’ adsorption. The quantum chemical calculations confirm the conclusions of the experimental studies.

  相似文献   

14.
《印度化学会志》2023,100(6):101013
Through using chemical and electrochemical methods, the theoretical and experimental investigation of the expired vilazodone drug's ability to prevent corrosion on aluminium (Al) in a corrosive medium of HCl (1 M) has been examined. Weighing tests (WL), electrochemical (impedance spectroscopy (EIS), potentiodynamic polarization (PDP)), atomic force microscopy (AFM), scanning electron microscope (SEM), and Fourier transform infrared spectroscopy (FTIR) tests at 25 °C have all been used to investigate Vilazodone's capability to prevent corrosion of Al in 1 M HCl in the concentration in the range of 25–150 ppm. The corrosion inhibition effect of the investigate Vilazodone's against Al in acid environment was investigated weight loss and electrochemical methods. The highest % inhibition efficiency (%IE) was 95% resulted from weight loss technique at the highest concentration for inhibitor. According to the PDP data, this examined vilazodone function as a mixed-type inhibitor, impacting both the anodic and cathodic reactions. The inhibitors covered the active points of the metal surface, according to electrochemical impedance spectroscopy (EIS), to prevent corrosion. It was discovered that the inhibitor adsorption on the Al surface obeyed the Langmuir adsorption isothermal model. AFM, SEM, and FTIR surface examinations proved the inhibitor had a significant protective effect against Al dissolution in 1 M HCl. The outcomes from chemical and electrochemical methods are relatively consistent. Vilazodone acted as an effective corrosion inhibitor, according to all of the experimental data.  相似文献   

15.
The inhibition effect of aqueous Argemone mexicana root extract (AMRE) on mild steel corrosion in 1 M HCl has been studied by weight loss, Tafel polarization curves, electrochemical impedance spectroscopy, scanning electron microscopy (SEM), and atomic force microscopy techniques. Results indicate that inhibition ability of AMRE increases with the increasing amount of the extract. A maximum corrosion inhibition of 94 % is acknowledged at the extract concentration of 400 mg L?1. Polarization curves and impedance spectra reveal that both cathodic and anodic reactions are suppressed due to passive layer formation at the metal–acid interface. It is also confirmed by SEM micrographs and FTIR studies. Furthermore, the effects of acid concentration (1–5 M), immersion time (120 h) and temperature (30–60 °C) on inhibition potential of AMRE have been investigated by the weight loss method and electrochemical techniques. An adsorption mechanism is also proposed on the basis of weight loss results, which shows good agreement with the Langmuir isotherm.  相似文献   

16.
The effects of 2,2′-[bis-N(4-cholorobenzaldimin)]-1,1′-dithio (BCBD) and bis-(2-aminophenyl) disulphide (BAPD) on the corrosion behavior of 302 stainless steel in 0.5 M sulfuric acid solution as corrosive medium were investigated using weight loss and potentiostatic polarization techniques. Some corrosion parameters such as anodic and cathodic Tafel slopes, corrosion potential, corrosion current density, surface coverage degrees and inhibition efficiencies were calculated. The polarization measurements indicated that the inhibitors were of mixed type which inhibited corrosion by parallel adsorption on the surface of stainless steel due to the presence of more than one active centre in the inhibitor molecule. The adsorption followed Langmuir adsorption isotherm. The activation energy and thermodynamic parameters were calculated at different temperatures. Results showed that BCBD had a higher inhibition efficiency compared with BAPD.  相似文献   

17.
The inhibitive action of 4-methyl pyrazole (4MP) against the corrosion of iron (99.9999%) in solutions of hydrochloric acid has been studied using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). At inhibitor concentration range (10?3–10?2 M) in 1.0 M acid, the results showed that 4MP suppressed mainly the anodic processes of iron corrosion in 1.0 M HCl by adsorption on the iron surface according to Temkin adsorption isotherm. Both potentiodynamic and EIS measurements reveal that 4MP inhibits the iron corrosion in 1.0 M HCl and that the efficiency increases with increasing inhibitor concentration. Data obtained from EIS were analyzed to model the corrosion inhibition process through an equivalent circuit.  相似文献   

18.
The corrosion inhibition property of expired Doxofylline (DF) was tested for soft steel in 1 M hydrochloric acid solution by adopting mass change and electrochemical measurement techniques. At 200 ppm concentration of DF, maximum of 72.84% inhibition efficiency was noticed. However with addition of 50 ppm of KI, it enhances the percentage inhibition efficiency up to 88.48%. DF resists both anodic and cathodic reactions and functioned as mixed-inhibition mechanism. At higher temperatures, electrochemical impedance response noticed that, the diameter of the semicircle decreases as solution temperature increases As a result, in both absence and presence of the inhibitor the Rp values were decreased. Quantum chemical studies revealed about structural and electronic effects in relation to the inhibition efficiencies. Surface morphology of both inhibited and corroded soft steel was assessed by means of scanning electron microscopy (SEM)) and atomic force microscope (AFM). The SEM images of soft steel reflect the inhibitive property of the DF at optimized concentration and a significant decrease in the surface roughness was observed (surface roughness was reduced from 606 nm to 294 nm as measured by AFM)). UV-Visible absorption peaks signifies that CC and CO groups from the inhibitor were interacted with iron cations, which is the evidence for the formation protective film over the soft steel surface.  相似文献   

19.
The corrosion of pure aluminium in alkaline solution has been explored using an open circuit potential transient, potentiodynamic polarization experiment and a.c. impedance spectroscopy. The steady-state value of the open circuit potential (E ocp ss ) of pure aluminium in alkaline solution was observed to decrease with increasing rotation rate of the specimen, which is ascribed to the enhanced anodic reaction. The extent of anodic polarization for the aluminium dissolution reaction on pure aluminium at E ocp ss was found to be greater than that of cathodic polarization for the water reduction reaction. This indicates that the rate of corrosion of pure aluminium is mainly determined by the anodic reaction in alkaline solution. Based upon the experimental results, a corrosion mechanism for pure aluminium has been proposed in the presence of the native surface oxide film in alkaline solution, involving consecutive oxide film formation and dissolution, and simultaneous water reduction.  相似文献   

20.
A series of inhibitors—isatin derivatives aimed at anticorrosion of Q235A steel—was synthesized. The molecule structures were analyzed by NMR and MS. The inhibition on the corrosion in a concentrated HCl solution as high as 3 M was studied by weight loss, molecular simulation, and potentiodynamic polarization. The results indicate that isatin derivatives act as mixed type (cathodic/anodic) inhibitors. Several compounds were investigated in the formulations, during which compound 6 shows 95.5 % inhibition efficiency under the concentration of 100 mg/L accompanied by urotropine and 1,4-dihydroxy-2-butyne.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号