首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
In this paper, we investigate the geometric phase of a composite system which is composed of two spin- particles driven by a time-varying magnetic field. Firstly, we consider the special case that only one subsystem driven by time-varying magnetic field. Using the quantum jump approach, we calculate the geometric phase associated with the adiabatic evolution of the system subjected to decoherence. The results show that the lowest order corrections to the phase in the no-jump trajectory is only quadratic in decoherence coefficient. Then, both subsystem driven by time-varying magnetic field is considered, we show that the geometric phase is related to the exchange-interaction coefficient and polar angle of the magnetic field.  相似文献   

3.
A complete theoretical treatment in many problems relevant to physics, chemistry, and biology requires considering the action of the environment over the system of interest. Usually the environment involves a relatively large number of degrees of freedom, this making the problem numerically intractable from a purely quantum-mechanical point of view. To overcome this drawback, a new class of quantum trajectories is proposed. These trajectories, based on the same grounds as Bohmian ones, are solely associated to the system reduced density matrix, since the evolution of the environment degrees of freedom is not considered explicitly. Within this approach, environment effects come into play through a time-dependent damping factor that appears in the system equations of motion. Apart from their evident computational advantage, this type of trajectories also results very insightful to understand the system decoherence. In particular, here we show the usefulness of these trajectories analyzing decoherence effects in interference phenomena, taking as a working model the well-known double-slit experiment.  相似文献   

4.
We set up a forward - backward path integral for a point particle in a bath of photons to derive a master equation for the density matrix which describes electromagnetic dissipation and decoherence. We also derive the associated Langevin equation. As an application, we recalculate the Wigner-Weisskopf formula for the natural line width of an atomic state at zero temperature and find, in addition, the temperature broadening caused by the decoherence term. Our master equation also yields the correct Lamb shift of atomic levels. The two equations may have applications to dilute interstellar gases or to few-particle systems in cavities. Received 29 November 2000 and Received in final form 11 February 2001  相似文献   

5.
Using the methods of quantum trajectories we study effects of dissipative decoherence on the accuracy of the Grover quantum search algorithm. The dependence on the number of qubits and dissipation rate are determined and tested numerically with up to 16 qubits. As a result, our numerical and analytical studies give the universal law for decay of fidelity and probability of searched state which are induced by dissipative decoherence effects. This law is in agreement with the results obtained previously for quantum chaos algorithms.  相似文献   

6.
It has been shown earlier [3,6] that matter waves which are known to lie typically in the range of a few angstrom, can also manifest in the macrodomain with a wave length of a few centimeters, for electrons propagating along a magnetic field. This followed from the predictions of a probability amplitude theory by the author [1,2] in the classical macrodomain of the dynamics of charged particles in a magnetic field. It is shown in this paper that this case constitutes only a special case of a generic situation whereby composite systems such as atoms and molecules in their highly excited internal states, can exhibit matter wave manifestation in macro and mesodomains, in one-dimensional scattering. The wave length of these waves is determined, not by the mass of the particle as in the case of the de Broglie wave, but by the frequency ω, of the classical orbital motion of the internal state in the correspondence limit, and is given by a nonquantal expression, λ = 2πv/ω, v being the velocity of the particle. For the electrons in a magnetic field the frequency corresponds to the gyrofrequency, Ω and the nonquantal wave length is given by λ = 2πv || /Ω; v || being the velocity of electrons along the magnetic field. Received 29 September 2001 / Received in final form 23 May 2002 Published online 19 July 2002  相似文献   

7.
The interaction of two–level atoms with a common heat bath leads to an effective interaction between the atoms, such that with time the internal degrees of the atoms become correlated or even entangled. If part of the atoms remain unobserved this creates additional indirect decoherence for the selected atoms, on top of the direct decoherence due to the interaction with the heat bath. I show that indirect decoherence can drastically increase and even dominate the decoherence for sufficiently large times. I investigate indirect decoherence through thermal black body radiation quantitatively for atoms trapped at regular positions in an optical lattice as well as for atoms at random positions in a cold gas, and show how indirect decoherence can be controlled or even suppressed through experimentally accessible parameters.  相似文献   

8.
We express the commutation relation between the operators of the momentum and the radial unit vectors in D dimensions in differential and integral form. We connect this commutator with the quantum fictitious potential emerging in the radial Schr?dinger equation of an s-wave. Received: 6 August 2002 / Revised version: 30 October 2002 / Published online: 26 February 2003 RID="*" ID="*"Corresponding author. Fax: +49-731/502-3086, E-mail: markus.cirone@physik.uni-ulm.de  相似文献   

9.
We investigate the phonon-induced decoherence and dissipation in a donor-based charge quantum bit realized by the orbital states of an electron shared by two dopant ions which are implanted in a silicon host crystal. The dopant ions are taken from the group-V elements Bi, As, P, Sb. The excess electron is coupled to deformation potential acoustic phonons which dominate in the Si host. The particular geometry tailors a non-monotonous frequency distribution of the phonon modes. We determine the exact qubit dynamics under the influence of the phonons by employing the numerically exact quasi-adiabatic propagator path integral scheme thereby taking into account all bath-induced correlations. In particular, we have improved the scheme by completely eliminating the Trotter discretization error by a Hirsch-Fye extrapolation. By comparing the exact results to those of a Born-Markov approximation we find that the latter yields appropriate estimates for the decoherence and relaxation rates. However, noticeable quantitative corrections due to non-Markovian contributions appear.  相似文献   

10.
Carrier-phonon interaction in semiconductor quantum dots leads to three classes of phenomena: coherent effects (spectrum reconstruction) due to the nearly-dispersionless LO phonons, incoherent effects (transitions) induced by acoustical phonons and dressing phenomena, related to non-adiabatic, sub-picosecond excitation. Polaron spectra, relaxation times and dressing-related decoherence rates are calculated, in accordance with experiment. Received 30 August 2002 / Received in final form 25 November 2002 Published online 28 January 2003  相似文献   

11.
We study the effect of photon scattering from a path of a four-beam atomic interference setup, which is based on a cesium atomic beam and two subsequent optical Ramsey pulses projecting the atoms onto a multilevel dark state. While in two-beam interference, any attempt to keep track of an interfering path reduces the fringe contrast, we demonstrate that photon scattering in a multiple-path arrangement cannot only lead to a decrease, but - under certain conditions - also to an increase of the interference contrast. The results are confirmed by a density-matrix calculation. We are aware that in all cases the “which-path” information carried away by the scattered photons leads to a loss of information that is contained in the atomic quantum state. An approach to quantify this “which-path” information using observed fringe signals is presented; it allows for an appropriate measure of quantum decoherence in multiple-path interference. Received: 27 July 2000 / Published online: 6 December 2000  相似文献   

12.
In this paper we investigate the Berry phase in Tavis-Cummings model in the rotating wave approximation. The dipole-dipole interaction between the atoms is considered. The eigenfunctions of the system are obtained and thus the Berry phase is evaluated explicitly in terms of the introduction of the phase shift. It is shown that the Berry phase can be easily controlled by the atom-cavity coupling strength, the cavity frequency detuning, which can be important in applications in geometric quantum computing.  相似文献   

13.
The properties of two-dimensional magnetic traps for laser-cooled atoms are analysed using complex functions. The two components of the magnetic field from a series of parallel, infinitely long, current-carrying wires are represented by a single complex number. The regions of the field where paramagnetic atoms can be trapped occur where the magnetic field is zero. The locations of the zeroes of the field are obtained as the solution to a polynomial and the multiplicity m of the solution determines both the 2(m + 1)-pole nature of the trap and the field gradient through the centre. The zeroes of the field can be merged or split by varying the locations of the currents, their strengths or by applying a uniform magnetic field. The theory is applied to magnetic traps created from long thin wires or permanent magnets on a substrate. The properties of a number of magnetic trap configurations used for atom guides are discussed. Received 28 February 2001 and Received in final form 6 July 2001  相似文献   

14.
We analyse the coherence properties of two particles trapped in a one-dimensional harmonic potential. This simple model allows us to derive analytic expressions for the first and second order coherence functions. We investigate their properties depending on the particle nature and the temperature of the quantum gas. We find that at zero temperature non-interacting bosons and fermions show very different correlations, while they coincide for higher temperatures. We observe atom bunching for bosons and atom anti-bunching for fermions. When the effect of s-wave scattering between bosons is taken into account, we find that the range of coherence is enhanced or reduced for repulsive or attractive potentials, respectively. Strongly repelling bosons become in some way more “fermion-like" and show anti-bunching. Their first order coherence function, however, differs from that for fermions. Received 19 September 2002 Published online 4 February 2003  相似文献   

15.
We develop an information theoretic interpretation of the number-phase complementarity in atomic systems, where phase is treated as a continuous positive operator valued measure (POVM). The relevant uncertainty principle is obtained as an upper bound on a sum of knowledge of these two observables for the case of two-level systems. A tighter bound characterizing the uncertainty relation is obtained numerically in terms of a weighted knowledge sum involving these variables. We point out that complementarity in these systems departs from mutual unbiasededness in two significant ways: first, the maximum knowledge of a POVM variable is less than log (dimension) bits; second, surprisingly, for higher dimensional systems, the unbiasedness may not be mutual but unidirectional in that phase remains unbiased with respect to number states, but not vice versa. Finally, we study the effect of non-dissipative and dissipative noise on these complementary variables for a single-qubit system.  相似文献   

16.
We present a consistent second order perturbation theory for the lowest-lying condensed modes of very small, weakly-interacting Bose-Einstein condensates in terms of bare particle eigenstates in a harmonic trap. After presenting our general approach, we focus on explicit expressions for a simple three-level system, mainly in order to discuss the analogy of a single condensate occupying two modes of a trap with the semi-classical theory for two-mode photon lasers. A subsequent renormalization of the single-particle energies to include the dressing imposed by mean fields demonstrates clearly the consistency of our treatment with other kinetic approaches. Received 14 December 2001  相似文献   

17.
We analyze the time evolution of an initial spatial coherence for a two level atom whose internal degrees of freedom interact with a single mode of a cavity field. When the qubit-field subsystem is taken as an environment, the translational dynamics experiences a decoherence process which may be encoded in a decoherence factor D. We find that the field statistics affects D through the alternative paths the system-environment may follow along their entanglement, while eventual field phase properties give rise to an imaginary part of D which is related to the atomic translation. From the decoherence perspective, we analyze the relation between the atomic momentum and the imaginary part of the atomic spatial density matrix, and some considerations on its asymptotic behavior are brought into question at the conclusion of the paper.  相似文献   

18.
The coherence in quantum superposition states of protons (and chemically similar particles, the positive muons) has been studied in some condensed matter environments. It is shown that if the proton systems and the experimental techniques used to study them are carefully selected, it is possible to observe quantum delocalization states of single particles and to understand the mechanisms for their loss of coherence. Quantum correlated two- and multiparticle states of protons lose coherence very fast when coupled to condensed matter environments, but new sub-femtosecond techniques have made them accessible to experimental studies. The degree of decoherence can be measured as function of time and the decoherence mechanisms can, at least in certain cases, be identified. Although less clean than in corresponding studies of quantum optical systems, these studies can be seen as a first step towards understanding the conditions for preservation of quantum correlation and entanglement in massive systems. Some consequences and some suggestions for future work are discussed. Received 28 August 2002 Published online 7 January 2003  相似文献   

19.
We study the geometric phase of an open two-level quantum system under the influence of a squeezed, thermal environment for both non-dissipative as well as dissipative system-environment interactions. In the non-dissipative case, squeezing is found to have a similar influence as temperature, of suppressing geometric phase, while in the dissipative case, squeezing tends to counteract the suppressive influence of temperature in certain regimes. Thus, an interesting feature that emerges from our work is the contrast in the interplay between squeezing and thermal effects in non-dissipative and dissipative interactions. This can be useful for the practical implementation of geometric quantum information processing. By interpreting the open quantum effects as noisy channels, we make the connection between geometric phase and quantum noise processes familiar from quantum information theory.  相似文献   

20.
We investigate the time evolution of entanglement for bipartite systems of arbitrary dimensions under the influence of decoherence. For qubits, we determine the precise entanglement decay rates under different system-environment couplings, including finite temperature effects. For qudits, we show how to obtain upper bounds for the decay rates and also present exact solutions for various classes of states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号