首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate the statistical equilibrium properties of a system of classical particles interacting via Newtonian gravity, enclosed in a three-dimensional spherical volume. Within a mean-field approximation, we derive an equation for the density profiles maximizing the microcanonical entropy and solve it numerically. At low angular momenta, i.e. for a slowly rotating system, the well-known gravitational collapse “transition” is recovered. At higher angular momenta, instead, rotational symmetry can spontaneously break down giving rise to more complex equilibrium configurations, such as double-clusters (“double stars”). We analyze the thermodynamics of the system and the stability of the different equilibrium configurations against rotational symmetry breaking, and provide the global phase diagram. Received 8 July 2002 Published online 15 October 2002 RID="a" ID="a"e-mail: demartino@hmi.de  相似文献   

2.
NMR of laser-polarized xenon is used to probe the dissolution behaviour of the noble gas in different liquids. The dissolution and self-relaxation rates are extracted via a macroscopic model, and comparison of the decay rate of the xenon magnetization in deuterated and non-deuterated solvent pairs allows the determination of the pure dipole-dipole contribution to relaxation. A transient convective effect, tentatively assigned to the xenon concentration gradient, is observed and characterized by diffusion encoding MRI experiments. The flow of xenon penetrates inside the solvent near the walls of the NMR tube, the longitudinal images showing a “” shape, the transverse ones a “O” shape. This convection effect has implications for delivery conditions of laser-polarized xenon in continuous flow experiments and magnetic resonance imaging. Received 29 April 2002 / Received in final form 26 July 2002 Published online 22 October 2002 RID="a" ID="a"e-mail: hdesvaux@cea.fr RID="b" ID="b"URA CNRS/CEA 331  相似文献   

3.
In this paper we study several means of compensating for thermal lensing which, otherwise, should be a source of concern for future upgrades of interferometric detectors of gravitational waves. The methods we develop are based on the principle of heating the cold parts of the mirrors. We find that thermal compensation can help a lot but can not do miracles. It seems finally that the best strategy for future upgrades (“advanced configurations”) is may be to use thermal compensation together with another substrate materials than silica, for example sapphire. Received 26 April 2001  相似文献   

4.
The present paper develops a Statistical Mechanics approach to the inherent states of glassy systems and granular materials by following the original ideas proposed by Edwards for granular media. We consider three lattice models (a diluted spin glass, a system of hard spheres under gravity and a hard-spheres binary mixture under gravity) introduced to describe glassy and granular systems. They are evolved using a “tap dynamics” analogous to that of experiments on granular media. We show that the asymptotic states reached in such a dynamics are not dependent on the particular sample history and are characterized by a few thermodynamical parameters. We assume that under stationarity these systems are distributed in their inherent states satisfying the principle of maximum entropy. This leads to a generalized Gibbs distribution characterized by new “thermodynamical” parameters, called “configurational temperatures” (related to Edwards compactivity for granular materials). Finally, we show by Monte Carlo calculations that the average of macroscopic quantities over the tap dynamics and over such distribution indeed coincide. In particular, in the diluted spin glass and in the system of hard spheres under gravity, the asymptotic states reached by the system are found to be described by a single “configurational temperature”. Whereas in the hard-spheres binary mixture under gravity the asymptotic states reached by the system are found to be described by two thermodynamic parameters, coinciding with the two configurational temperatures which characterize the distribution among the inherent states when the principle of maximum entropy is satisfied under the constraint that the energies of the two species are independently fixed. Received 19 March 2002 and Received in final form 14 June 2002  相似文献   

5.
6.
The first analysis of rapid intramolecular motions of triphenyl phosphite by 2H NMR is presented. The fragile slowing down of the primary relaxation is followed by a solid-echo method. The occurrence of a fast reorientation of the phenyl side groups is demonstrated in the supercooled liquid state, identified as a two-fold flip on the basis of simple lineshape simulations. Coexistence of both static and motionally averaged components in “two phase” spectra indicate a broad distribution of correlation times for this relaxation. This dynamical behavior is shown to persist in the glacial phase. Received 28 May 2002 / Received in final form 1st October 2002 Published online 31 December 2002  相似文献   

7.
With respect to a “hot”, non-crystallized beam the synchrotron radiation of a cold crystallized beam is considerably modified. We predict suppression of synchrotron radiation emitted by a crystallized beam in a storage ring. We also propose experiments to detect this effect. Received: 19 June 1998 / Revised version: 10 August 1998  相似文献   

8.
The origin of the intrinsic excitonic (“green”) luminescence in ABO3 perovskites remains a hot topic over the last quarter of a century. We suggest as a theoretical interpretation for the “green” luminescence in these crystals, the recombination of electron and hole polarons forming a charge transfer vibronic exciton. In order to check quantitatively the proposed model, we performed quantum chemical calculations using the Intermediate Neglect of Differential Overlap (INDO) method combined with the periodic defect model. The luminescence energies calculated for four perovskite crystals are found to be in good agreement with experimental data. Received 19 December 2001 and Received in final form 14 March 2002 Published online 25 June 2002  相似文献   

9.
It has been shown earlier [3,6] that matter waves which are known to lie typically in the range of a few angstrom, can also manifest in the macrodomain with a wave length of a few centimeters, for electrons propagating along a magnetic field. This followed from the predictions of a probability amplitude theory by the author [1,2] in the classical macrodomain of the dynamics of charged particles in a magnetic field. It is shown in this paper that this case constitutes only a special case of a generic situation whereby composite systems such as atoms and molecules in their highly excited internal states, can exhibit matter wave manifestation in macro and mesodomains, in one-dimensional scattering. The wave length of these waves is determined, not by the mass of the particle as in the case of the de Broglie wave, but by the frequency ω, of the classical orbital motion of the internal state in the correspondence limit, and is given by a nonquantal expression, λ = 2πv/ω, v being the velocity of the particle. For the electrons in a magnetic field the frequency corresponds to the gyrofrequency, Ω and the nonquantal wave length is given by λ = 2πv || /Ω; v || being the velocity of electrons along the magnetic field. Received 29 September 2001 / Received in final form 23 May 2002 Published online 19 July 2002  相似文献   

10.
We have examined a number of candidates for the minimum-surface-energy arrangement of two-dimensional clusters composed of N bubbles of area 1 and N bubbles of area λ ( λ≤1). These include hexagonal bubbles sorted into two monodisperse honeycomb tilings, and various mixed periodic tilings with at most four bubbles per unit cell. We identify, as a function of λ, the minimal configuration for N → ∞. For finite N, the energy of the external (i.e., cluster-gas) boundary and that of the interface between honeycombs in “phase-separated” clusters have to be taken into account. We estimate these contributions and find the lowest total energy configuration for each pair (N,λ). As λ is varied, this alternates between a circular cluster of one of the mixed tilings, and “partial wetting” of the monodisperse honeycomb of bubble area 1 by the monodisperse honeycomb of bubble area λ. Received 1 August 2002 RID="a" ID="a"e-mail: paulo@ist.utl.pt  相似文献   

11.
We present the first application of Genetic Algorithms to the analysis of data from an aperiodically ordered system, high resolution X-Ray diffraction spectra from multilayer heterostructures arranged according to a deterministic or random scheme. This method paves the way to the solution of the “inverse problem”, that is the retrieval of the generating disorder from the investigation of the spectra of an unknown sample having non crystallographic, non quasi-crystallographic order. Received 18 March 2002 / Received in final form 3 July 2002 Published online 31 October 2002 RID="a" ID="a"e-mail: Evelyne.Lutton@inria.fr RID="b" ID="b"CNRS UMR 8502  相似文献   

12.
We compare two high sensitivity techniques which are used to measure very small displacements of physical objects by optical techniques: the interferometric devices, measuring longitudinal phase shifts, and the devices used to monitor transverse displacement of light beams. We detail the differences and the similarities for the quantum limits on the resolution of both systems. In both cases squeezed light can be used to resolve beyond the standard quantum limit and number correlated states allow us to reach the “Heisenberg” limit. Received 12 September 2002 Published online 21 January 2003  相似文献   

13.
14.
We investigate a collective excitation (Leggett's mode) corresponding to small fluctuations of the relative phase of two condensates in two-band superconductor using the effective “phase only” action. We consider the possibility of observing Leggett's mode in MgB2 superconductor and conclude that for the known at present values of the two-band model parameters for MgB2 Leggett's mode arises above the two-particle threshold. Received 10 May 2002 Published online 19 November 2002  相似文献   

15.
The Nambu spinor Green's function approach is applied to calculating the density of states (DOS) and superconducting order parameter in normal-metal/insulator/ferromagnet/superconductor (NM/I/FM/SC) junctions. It is found that the s-wave superconductivity and ferromagnetism can coexist near the FM/SC interface, which is induced by proximity effect. On the SC side, the spin-dependent DOS appears both within and without the energy gap. On the FM side, the superconducting order parameter displays a damped oscillation and the DOS exhibits some superconducting behavior. The calculated result for the DOS in FM for “0 state” and “π state” can reproduce recent tunneling spectra in Al/Al2O3/PdNi/Nb tunnel junctions. Received 1st July 2002 Published online 19 November 2002  相似文献   

16.
The production of topological defects during a quench in a φ4 model is investigated. The influence of a spatially correlated noise on defect production in two and three dimensions is demonstrated. Received 28 August 2001 / Received in final form 11 February 2002 Published online 2 October 2002 RID="a" ID="a"Paper supported in part by ESF “COSLAB” Programme RID="b" ID="b"e-mail: sfdobrow@kinga.cyf-kr.edu.pl  相似文献   

17.
The ω resonance production and its π0γ decay in pA reactions close to threshold is considered within the Intranuclear Cascade (INC) model. The π0γ invariant-mass distribution shows two components which correspond to the ω decay “inside” and “outside” the nucleus, respectively. The “inside” component is distorted by medium effects, which introduce a mass shift as well as collisional broadening for the ω-meson and its decaying pion. The relative contribution of the “inside” component is analyzed in detail for different kinematical conditions and nuclear targets. It is demonstrated that a measurement of the correlation in azimuthal angle between the π0 and γ momenta allows to separate events related to the “inside”ω decay from different sources of background when uncorrelated π0's and γ's are produced. Received: 2 April 2001 / Accepted: 5 June 2001  相似文献   

18.
Ion mobility experiments and molecular modeling calculations were used to investigate the gas-phase conformations and folding energetics of 16 deprotonated dinucleotides. [M-H]- ions were formed by MALDI and their collision cross-sections measured in helium using ion mobility based techniques. Cross-sections of theoretical structures, generated by molecular mechanics/dynamics calculations, were compared to the experimental values for conformational identification of the dinucleotides. Temperature dependent measurements and kinetic theory were also used to obtain energetic and dynamic data concerning the folding properties of the dinucleotides. Three distinct families of conformations, with significantly different collision cross-sections, were identified: a “stacked” family in which the two nucleobases stack; an “H-bonded” family in which the two nucleobases stay in the same plane and are hydrogen-bonded to each other; and an “open” family in which the two nucleobases are separated from each other. At temperatures ≥ 300 K these conformers rapidly interconvert in most systems, but they can be separated and individually observed in the lower temperature (80-200 K) experiments. The types and relative amounts of each conformer observed, and the temperature at which they can be separated, are base and sequence dependent. Theoretical modeling of the temperature-dependent data was used to determine isomerization barrier heights between the various conformers and yielded values between 0.8-12.9 kcal/mol, depending on the dinucleotide. Received 17 May 2002 Published online 13 September 2002  相似文献   

19.
We study the dynamics of a growing crystalline facet where the growth mechanism is controlled by the geometry of the local curvature. A continuum model, in (2+1) dimensions, is developed in analogy with the Kardar-Parisi-Zhang (KPZ) model is considered for the purpose. Following standard coarse graining procedures, it is shown that in the large time, long distance limit, the continuum model predicts a curvature independent KPZ phase, thereby suppressing all explicit effects of curvature and local pinning in the system, in the “perturbative” limit. A direct numerical integration of this growth equation, in 1+1 dimensions, supports this observation below a critical parametric range, above which generic instabilities, in the form of isolated pillared structures lead to deviations from standard scaling behaviour. Possibilities of controlling this instability by introducing statistically “irrelevant" (in the sense of renormalisation groups) higher ordered nonlinearities have also been discussed. Received 23 April 2002 / Received in final form 24 July 2002 Published online 31 October 2002 RID="a" ID="a"e-mail: akc@mpipks-dresden.mpg.de  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号