首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The non-isothermal devitrification of Na2O · 2 CaO · 3 SiO2 glass has been studied by differential thermal analysis in order to evaluate, from DTA curves, the temperature of maximum nucleation rate, Tm, and the activation energy values, Ec, for crystal growth.The temperature, Tm=580°C, is very close to the glass transition temperature, Tg=570°C, and the value of Ec=78 Kcal mole?1 for the surface crystal growth is nearly the same as the value Ec=89 kcal mole?1 for the bulk crystal growth; both are consistent with the activation energy for viscous flow. It is also pointed out that the nucleation rate—temperature curve and the crystallization rate—temperature curve are partially overlapped.  相似文献   

2.
The onset of electro-magnetic optic effects, observed at the Ba L2,3 edges synchrotron X-ray absorption by a YBa2Cu3O7 single crystal, 20 K above the transition temperature to superconductivity, Tc ∼ 92 K is used to identify the role played by the Ba donor layer in the transition to superconductivity in the CuO2 layers. Negative permeability leads to Faraday rotation of the transmitted beam below T = 112 to 56 K for the 22 μm thick single crystal (c-axis orientation of 8π/18 relative to εX-rays) and sharp changes in the density of empty final states lead to zero transmitted radiation in an interval ΔE at the given orientation. The temperature dependence: ΔE(L2) = 1.4, 3.5 and 3.9 eV, while ΔE(L3) = 5.3, 6 and 7 eV at T = 92, 74 and 63 K, respectively, indicates that the width of the empty final states bands increases as T decreases. ΔE(L3)/ΔE(L2) = 3.8 at 92 K to 1.8 at 63 K also indicates that the d5/2 symmetry bands fill faster than those of d3/2 symmetry below Tc, providing the first experimental evidence of unpaired spin-orbit states in the Ba donor layer of a superconductor. These effects, characteristic of ferromagnetic and anti-ferromagnetic materials near a resonance absorption, signal the onset of a Mott transition. The interaction between the layer states is described using 1D conjugate molecular orbitals.  相似文献   

3.
A brief derivation of the Kissinger’s equation for analysis of experimental data of non-isothermal glass transition peaks based on the free volume model is given. This equation was applied successfully to Cu0.3(SSe20)0.7 chalcogenide glass for different heating rates. For granted this model, the obtained glass transition activation energy, E g must be constant throughout the whole glass transition temperature range. This required that T g to be determined for three characteristic temperature points for each DSC curve.  相似文献   

4.
Se80?x Te20Zn x (x?=?2, 4, 6, 8, and 10) glasses have been prepared using conventional melt quenching technique. The kinetics of phase transformations (glass transition and crystallization) have been studied using differential scanning calorimetry (DSC) under non-isothermal condition at five different heating rates in these glasses. The activation energy of glass transition (E t), activation energy of crystallization (E c), Avrami exponent (n), dimensionality of growth (m), and frequency factor (K o) have been investigated for the better understanding of growth mechanism using different theoretical models. The activation energy is found to be highly dependent on Zn concentration. The rate of crystallization is found to be lowest for Se70Te20Zn10 glassy alloy. The thermal stability of these glasses has been investigated using various stability parameters. The values of these parameters were obtained using characteristic temperatures, such as glass transition temperature T g, onset crystallization temperature T c, and peak crystallization temperature T p. In addition to this, enthalpy-released during crystallization has also been determined. The values of stability parameters show that the thermal stability increases with the increase in Zn concentration in the investigated glassy samples.  相似文献   

5.
Glassy Se100?x(Ge2Sb2Te5)x (x?=?5, 10, 15 and 20) bulk alloys were prepared by melt-quenched technique and studied by using differential scanning calorimetry at different heating rates under non-isothermal condition. The detailed thermal analysis shows that the glass transition temperature (Tg) depends on heating rates and x content. In particular, it is found that the glass-forming ability, thermal stability (Tc???Tg) and crystallization activation energy (Ec) increase with increased x content in amorphous Se, whereas glass transition activation energy (Eg) and fragility index (F) decrease with increased x contents. Variation in these parameters can be explained on the basis of network-forming ability of Se and bonding arrangement among the constituent atoms of alloys.  相似文献   

6.
This paper presents the results of kinematical studies of glass transition and crystallization in glassy Se85?x Te15Sb x (x = 2, 4, 6 and 8) using differential scanning calorimetry (DSC). From the dependence on heating rates of, the glass transition temperatures (T g), and temperature of crystallization (T p) the activation energy for glass transition (E g) and the activation energy for crystallization (E c) are calculated and their composition dependence can be discussed in term of the average coordination number and cohesive energy. The thermal stability of Se85?x Te15Sb x was evaluated in terms of criterion ΔT = T c ? T g and kinetic criteria K(T g) and K(T p). By analyzing the crystallization results, the crystallization mechanism is characterized. Two (two- and three-dimensional growth) mechanisms are working simultaneously during the amorphous–crystalline transformation of the Se83Te15Sb3 alloy while only one (three-dimensional growth) mechanism is responsible for the crystallization process of the chalcogenides Se85?x Te15Sb x (x = 4, 6 and 8) glass. The phases at which the alloy crystallizes after the thermal process have been identified by X-ray diffraction.  相似文献   

7.
The crystallization kinetics of Cu50Zr43Al7 and (Cu50Zr43Al7)95Be5 metallic glasses was studied using differential scanning calorimetry (DSC) at four different heating rates under non-isothermal condition. The glass transition temperature T g, the onset temperature of crystallization T x, and the peak temperature of crystallization T p of the two metallic glasses were determined from DSC curves. The values of various kinetic parameters such as the activation energy of glass transition E g, activation energy of crystallization E p, Avrami exponent n and dimensionality of growth m were evaluated from the dependence of T g and T p on the heating rate. The values of E g and E p, calculated from many different models, are found to be in good agreement with each other. The average values of the Avrami exponent n are (2.8 ± 0.4) for Cu50Zr43Al7 metallic glass and (4.2 ± 0.3) for (Cu50Zr43Al7)95Be5 metallic glass, which are consistent with the mechanism of two-dimensional growth and three-dimensional growth, respectively. Finally, the parameter H r, S, and crystallization enthalpy ΔH c are introduced to estimate the glass-forming ability and thermal stability of metallic glasses. The result shows that the addition of Be improves the glass-forming ability and thermal stability of Cu50Zr43Al7 metallic glass.  相似文献   

8.
In this work, the crystallization process of a SiO2–3CaO·P2O5–MgO glass was studied by non-isothermal measurements using differential thermal analysis carried out at various heating rates. X-ray diffraction at room and high temperature was used to identify and follow the evolution of crystalline phases with temperature. The activation energy associated with glass transition, (E g), the activation energy for the crystallization of the primary crystalline phase (E c), and the Avrami exponent (n) were determined under non-isothermal conditions using different equations, namely from Kissinger, Matusita & Sakka, and Osawa. A complex crystallization process was observed with associated activation energies reflecting the change of behavior during in situ crystal precipitation. It was found that the crystallization process was affected by the fraction of crystallization, (x), giving rise to decreasing activation energy values, E c(x), with the increase of x. Values ranging from about 580 kJ mol?1 for the lower crystallized volume fraction to about 480 kJ mol?1 for volume fractions higher than 80 % were found. The Avrami exponents, calculated for the crystallization process at a constant heating rate of 10 °C min?1, increased with the crystallized fraction, from 1.6 to 2, indicating that the number of nucleant sites is temperature dependent and that crystals grow as near needle-like structures.  相似文献   

9.
Thermomechanical analysis (TMA) can be used as a sensitive tool to follow crystallization behavior in non-crystalline materials. Newly developed method is based on slowing down of sample deformation caused by viscous flow above the glass transition due to macroscopic crystal growth. It is shown that a typical TMA sigmoidal curve reasonably well corresponds to direct measurement of crystal growth kinetics by means of optical microscopy. The method has been used to study crystallization kinetics in Ge38S62 glass. The TMA measurement is able to detect earlier stages of crystallization than obtained by differential scanning calorimetry measurement. The activation energy obtained from the shift of extrapolated end of TMA curve with heating rate (E = 263 ± 7 kJ mol?1) is similar to the activation energy of ??-GeS2 crystal growth in Ge38S62 glass (E G = 247 ± 23 kJ mol?1) obtained from direct optical microscopy measurements.  相似文献   

10.
Basic thermal parameters such as the glass transition and crystallization temperatures of bulk GexSb40−xSe60 (x=15, 20, 25, 27, 32 and 35) glasses have been determined by differential thermal analysis. The observed peculiarity in the variation of the glass transition temperature with the heating rate increase in the narrow range of average coordination number Z=2.65-2.67 has been related to structural and chemical transitions. It has been established that especially the compositions at x=20, 25 and 27 do not crystallize by the applied non-isothermal regime. Identification of the corresponding crystalline phases for the rest samples has been specified. The apparent activation energy of crystallization has values of ∼174 kJ mol−1.  相似文献   

11.
The crystallization and microstructure of Li2O-Al2O3-SiO2 (LAS) glass ceramic with complex nucleating agents (TiO2 + ZrO2 + P2O5 +/or F) are investigated by differential thermal analysis (DTA), X-ray diffraction (XRD) and scanning electron microscopy (SEM), and the effects of P2O5 and F on the crystallization of LAS glass are also analyzed. The introduction of both P2O5 and F promotes the crystallization of LAS glass by decreasing the crystallization temperature and adjusting the crystallization kinetic parameters, allows a direct formation of β-spodumene without the transformation of LiAl(SiO3)2 into β-spodumene and as a result, increases the crystal size and crystallinity of LAS glass ceramic.  相似文献   

12.
13.
The high-resolution transmission electron microscopy HRTEM study of the atomic scale mechanism of crystal structure organization within the amorphous polymeric structure of the model multicomponent glass TiO2–MgO–Al2O3–SiO2– in the glass transformation temperature range has been undertaken. In the glass transition (T g) temperature range, glass transforms from the solid of rigid amorphous structure into viscoelastic state of weakened chemical bonds. This is an example of nuclei formation and crystal growth in the polymeric amorphous structure of low atomic scale homogeneity due to middle range ordering. It has been demonstrated that in this case crystal structure formation proceeds by successive displacement and local ordering of atoms in the amorphous structure, like disorder-order transformation in crystalline solid bodies. As the consequence in the crystallization by parent structure reorganization mechanism, traditional model of glass crystallization as well as kinetic models of reactions in solid bodies according Avrami or others, are worthy to be revised.  相似文献   

14.
The present article deals with the differential scanning calorimetric (DSC) study of Se?CTe glasses containing Sn. DSC runs are taken at four different heating rates (10, 15, 20 and 25?K?min?1). The crystallization data are examined in terms of modified Kissinger, Matusita equations, Mahadevan method and Augis and Bennett approximation for the non-isothermal crystallization. The activation energy for crystallization (E c) is evaluated from the data obtained at different heating rates. Activation energy of glass transition is calculated by Kissinger??s relation and Moynihan theory. The glass forming tendency is also calculated for each composition. The glass transition temperature and peak crystallization temperature increases with the increase in Sn % as well as with the heating rate.  相似文献   

15.
Granular Ag-added La0.7Ca0.3MnO3 (LCMO) samples were prepared by a sol-gel chemical route. Significant enhancements in Curie temperature (TC), metal−insulator transition (Tp) and magnetoresistance (MR) effects near room temperature are observed in as-obtained samples. 10 wt% addition of Ag in LCMO causes TC shift from 272 to 290 K, Tp boost up for more than 100 K and resistivity decrease by more than 3 orders of magnitude. X-ray diffraction patterns, thermal analysis and energy dispersive analysis of X-rays evidently show the existence of metal silver in LCMO matrices. High-resolution electron microscopy illustrates a well crystallization for LCMO grains in existence of Ag. It is argued that improved grain boundary effect and better crystallization caused by Ag addition are responsible for the enhancements.  相似文献   

16.
The crystallization transformation kinetics of Ti20Zr20Hf20Be20(Cu50Ni50)20 high-entropy bulk metallic glass under non-isothermal conditions are investigated using differential scanning calorimetry. The alloy shows two distinct crystallization events. The activation energies of the crystallization events are determined using Kissinger, Ozawa and Augis–Bennett methodologies. Further, we observe that similar values are obtained using the three equations. The activation energy of the initial crystallization event is observed to be slightly small as compared to that of the second event. This implies that the initial crystallization event may have been easier to be occurred. The local activation energy (E(x)) maximizes in the initial stage of crystallization and keeps dropping in subsequent crystallization process. The non-isothermal crystallization kinetics are further analyzed using the modified Johnson–Mehl–Avrami (JMA) equation. Further, the Avrami exponent values are observed to be 1.5 < n(x) < 2.5 for approximately the entire period of the initial crystallization event and for most instances (0.1 < x < 0.6) of the second crystallization event, which implies that the mechanism of crystallization is significantly controlled by diffusion-controlled two- and three-dimensional growth along with a decreasing nucleation rate.  相似文献   

17.
Phase equilibria, crystal structure, and transport properties in the (100−x) La0.95Ni0.6Fe0.4O3-xCeO2 (LNFCx) system (x=2-75 mol%) were studied in air. Evolution of phase compositions and crystal structure of components was observed. The LNFCx (2≤x≤10) are three-phase and comprise the perovskite phase with rhombohedral symmetry (R3?c), the modified ceria with fluorite structure (Fm3?m), and NiO as a secondary phase. These multiphase compositions exhibit metallic-like conductivity above 300 °C. Their conductivity gradually decreases from 395.6 to 260.6 S/cm, whereas the activation energy remains the same (Ea=0.04-0.05 eV), implying the decrease in the concentration of charge carriers. Phase compositions in the LNFCx (25≤x≤75) are more complicated. A change from semiconducting to metallic-like conductivity behavior was observed in LNFC25 at about 550 °C. The conductivity of LNFCx (25≤x≤75) could be explained in terms of a modified simple mixture model.  相似文献   

18.
The effect of In impurity on the crystallization kinetics and the changes taking place in the structure of (Se7Te3) have been studied by DTA measurements at different heating rates (α=5 deg·min?1, 10 deg·min?1, 15 deg·min?1 and 20 deg·min?1). From the heating rate dependence of the values ofT g,T c andT p, the glass transition activation energy (E t) and the crystallization activation energy (E c) have been obtained for different compositions of (Se7Te3)100?xInx (0≤×≤20). The variation of viscosity as a function of temperature has been evaluated using Vogel-Tamman-Fulcher equation. The crystallization data are analysed using Kissinger's and Matusita's approach for nonisothermic crystallization. It has been found that for samples containing In=0, 10, 15, 20 at%, three dimensional nucleation is predominant whereas for samples containing In=5 at%, two dimensional nucleation is the dominant mechanism. The compositional dependence ofT g and crystallization kinetics are discussed in terms of the modification of the structure of the Se?Te system.  相似文献   

19.
Calorimetric measurements have been performed in glassy Se90M10 (M=In, Te, Sb) alloys to study the effect of In, Te and Sb additives on the kinetics of glass transition and crystallization in glassy Se90M10 system. Kinetic parameters of glass transition and crystallization such as the activation energy of glass transition (E g), the activation energy of crystallization (M c), the order parameter (n), the rate constant (K), etc. have been determined using different non-isothermal methods. The composition dependence of the activation energies of glass transition and crystallization processes is also discussed.  相似文献   

20.
[Ni(ND3)6](ClO4)2 has three solid phases between 100 and 300 K. The phase transitions temperatures at heating (TC1h=164.1 K and TC2h=145.1 K) are shifted, as compared to the non-deuterated compound, towards the lower temperature of ca. 8 and 5 K, respectively. The ClO4 anions perform fast, picosecond, isotropic reorientation with the activation energy of 6.6 kJ mol−1, which abruptly slow down at TC1c phase transition, during sample cooling. The ND3 ligands perform fast uniaxial reorientation around the Ni-N bond in all three detected phases, with the effective activation energy of 2.9 kJ mol−1. The reorientational motion of ND3 is only slightly distorted at the TC1 phase transition due to the dynamical orientational order-disorder process of anions. The low value of the activation energy for the ND3 reorientation suggests that this reorientation undergoes the translation-rotation coupling, which makes the barrier to the rotation of the ammonia ligands not constant but fluctuating. The phase polymorphism and the dynamics of the molecular reorientations of the title compound are similar but not quite identical with these of the [Ni(NH3)6](ClO4)2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号