首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The electronic structures and absorption spectra for both the perfect PbWO4 (PWO) crystal and the three types of PWO crystals, containing VPb2−, VO2+ and a pair of VPb2−-VO2+, respectively, have been calculated using CASTEP codes with the lattice structure optimized. The calculated absorption spectra indicate that the perfect PWO crystal does not occur absorption band in the visible and near-ultraviolet region. The absorption spectra of the PWO crystal containing VPb2− exhibit seven peaks located at 1.72 eV (720 nm), 2.16 eV (570 nm), 2.81 eV (440 nm), 3.01 eV (410 nm), 3.36 eV (365 nm), 3.70 eV (335 nm) and 4.0 eV (310 nm), respectively. The absorption spectra of the PWO crystal containing VO2+ occur two peaks located at 370 nm and 420 nm. The PWO crystal containing a pair of VPb2−-VO2+ does not occur absorption band in the visible and near-ultraviolet region. This leads to the conclusions that the 370 and 420 nm absorption bands are related to the existence of both VPb2− and VO2+ in the PWO crystal and the other absorption bands are related to the existence of the VPb2− in the PWO crystal. The existence of the pair of VPb2−-VO2+ has no visible effects on the optical properties. The calculated polarized optical properties are well consistent with the experimental results.  相似文献   

2.
The electronic structures and absorption spectra for the perfect PbWO4 (PWO) crystal and the crystal containing lead vacancy have been calculated using density functional theory code CASTEP with the lattice structure optimized. The calculated absorption spectra of the PWO crystal containing exhibit seven absorption bands peaking at 1.72 eV (720 nm), 2.16 eV (570 nm), 2.81 eV (440 nm), 3.01 eV (410 nm), 3.36 eV (365 nm), 3.70 eV (335 nm) and 4.0 eV (310 nm), which are very close to the experimental values. It predicts that the 330, 360, 420, 500-750 nm absorption bands are related to the existence of in the PWO crystal.  相似文献   

3.
Electronic structures of PbMoO4 crystals containing Mn ion impurities located at Pb2+ sites are studied within the framework of the fully relativistic self-consistent Direc-Slater theory, using a numerically discrete variational (DV-Xα) method. The calculated results show that Mn2+ ions have donor energy levers in the forbidden band, which may correspond to the yellowish color absorption band of PbMoO4 as-grown in air. The new-formed Mn3+ ions have acceptor energy levers in the forbidden band, which may relate to the photochromic effect in PbMoO4 crystal.  相似文献   

4.
The formation and migration mechanisms of three different point defects (mono-vacancy, anti-site defect and interstitial atom) in B2-type MoTa alloy have been investigated by combining molecular dynamics (MD) simulation with modified analytic embedded-atom method (MAEAM). From minimization of the formation energy, we find that the anti-site defects MoTa and TaMo are easier to form than Mo and Ta mono-vacancies, while Mo and Ta interstitial atoms are difficult to form in the alloy. In six migration mechanisms of Mo and Ta mono-vacancies, one nearest-neighbor jump (1NNJ) is the most favorable due to its lowest activation and migration energies, but it will cause a disorder in the alloy. One next-nearest-neighbor jump (1NNNJ) and one third-nearest-neighbor jump (1TNNJ) can maintain the ordered property of the alloy but require higher activation and migration energies, so the 1NNNJ and 1TNNJ should be replaced by straight [1 0 0] six nearest-neighbor cyclic jumps (S[1 0 0]6NNCJ) or bent [1 0 0] six nearest-neighbor cyclic jumps (B[1 0 0]6NNCJ) and [1 1 0] six nearest-neighbor cyclic jumps ([1 1 0]6NNCJ), respectively. Although the migrations of Mo and Ta interstitial atoms need much lower energy than Mo and Ta mono-vacancies, they are not main migration mechanisms due to difficult to form in the alloy.  相似文献   

5.
Using first-principles methods, we studied the extrinsic defects doping in transparent conducting oxides CuMO2 (MSc, Y). We chose Be, Mg, Ca, Si, Ge, Sn as extrinsic defects to substitute for M and Cu atoms. By systematically calculating the impurity formation energy and transition energy level, we find that BeCu is the most prominent extrinsic donor and CaM is the prominent extrinsic acceptor. In addition, we find that Mg atom substituting for Sc is the most prominent extrinsic acceptor in CuScO2. Our calculation results are expected to be a guide for preparing n-type and p-type materials through extrinsic doping in CuMO2 (MSc,Y).  相似文献   

6.
Characteristics of two green emission bands, G(I) and G(II), and their origin were investigated within 0.4-300 K under photoexcitation in the 3.4-6.0 eV energy range for undoped and Mo6+-, Mo6+ , Y3+-, Mo6+, Nb5+-, Mo6+, Ce3+-, Cr6+-, La3+-, Ba2+- and Cd2+-doped PbWO4 crystals with different concentrations of impurity and intrinsic defects, grown by different methods and annealed at different conditions. The G(I) emission band, observed at low temperatures, located around 2.3-2.4 eV and excited around 3.9 eV, is usually a superposition of many closely positioned bands. The G(I) emission of undoped crystals is assumed to arise from the WO42− groups located in the crystal regions of lead-deficient structure. In Mo6+-doped crystals, this emission arises mainly from the MoO42− groups themselves. The G(II) emission band located at 2.5 eV is observed only in the crystals, containing the isolated oxygen vacancies — WO3 groups. This emission appears at T>160 K under excitation around 4.07 eV as a result of the photo-thermally stimulated disintegration of localized exciton states and subsequent recombination of the produced electron and hole centres near WO3 groups. The G(II) emission accompanies also thermally stimulated recombination processes in PbWO4 crystals above 150 K. Mainly the G(II) emission is responsible for the slow decay of the green luminescence in PbWO4 crystals.  相似文献   

7.
The electronic structures of BaWO4 crystals containing F-type color centers are studied within the framework of the fully relativistic self-consistent Dirac-Slater theory, using a numerically discrete variational (DV-Xα) method. It is concluded that F and F+ color centers have donor energy level in the forbidden band. The optical transition energies are 2.449 and 3.101 eV, which correspond to the 507 and 400 nm absorption bands, respectively. It is predicted that 400-550 nm absorption bands originate from the F and F+ color centers in BaWO4 crystals.  相似文献   

8.
Pure and impurity-added (with urea and thiourea) MgSO4·7H2O and NiSO4·7H2O single crystals were grown by the free-evaporation method from aqueous solutions. Density was measured by the flotation method. X-ray diffraction data were collected for powder samples and used for the estimation of thermal parameters like Debye-Waller factor, mean-square amplitude of vibration, Debye temperature and Debye frequency. The thermal parameters do not vary in a particular order with respect to impurity concentration, which could be attributed to the random disturbance created by the impurity molecules in the hydrogen-bonding system of the MgSO4·7H2O and NiSO4·7H2O lattices.  相似文献   

9.
Layered manganate Ba6Mn5O16 was prepared by a traditional solid-state reaction method and its microstructure at atomic level was investigated in detail by means of high-resolution transmission electron microscopy (HRTEM). Although the sample shows, from the XRD data, a nearly single-phase n=5 layered Ba6Mn5O16 phase of the hexagonal Ban+1MnnO3n+1 homologous series, the presence of numerous structural defects, especially intergrowth faults of the hexagonal Ban+1MnnO3n+1 homologous series with different n in it, was revealed by HRTEM. Furthermore, a minor 2H BaMnO3 phase was also found to coexist with the layered Ba6Mn5O16 phase. These defects could have a correlation with the magnetic properties of the sample, i.e. the TN being very broad and the appearance of the Curie tail in the susceptibility.  相似文献   

10.
Using transmission electron microscopy, a new nano-phase structure of Zn0.75Ox induced by Zn-vacancy has been discovered to grow on wurtzite ZnO nanobelts. The superstructure grows epitaxial from the surface of the wurtzite ZnO nanobelts and can be fitted as an orthorhombic structure, with lattice parameters a′=2a, and c′=c, where a and c are the lattice parameters of ZnO. The superstructured phase is resulted from high-density Zn vacancies orderly distributed in the ZnO matrix. This study provides direct observation about the existence of Zn-vacancies in ZnO.  相似文献   

11.
A density functional study is performed to investigate the magnetism induced by the nonmagnetic impurity substitution for the cation in SnO2. The calculated results show that the K impurity substitution leads to a robust magnetism in SnO2, and the induced magnetic moments are mainly attributed to the first shell of oxygen atoms surrounding the impurity atom. Meanwhile, no magnetism is observed in SnO2 doped with Ca which implies a decreasing tendency of induced magnetic moments for Sn substituted by vacancy, K, and Ca. It is also demonstrated that the magnetic coupling constant oscillates as a function of K-K separation distance, and the Curie temperature above room temperature can be obtained in K-doped SnO2.  相似文献   

12.
Luminescence characteristics of a large number of undoped and doped PbWO4 crystals, grown by the Czochralski or Bridgman method, as-grown or annealed in the nitrogen atmosphere or in air, were studied in the 4.2–300 K temperature range. Two types of red emission centres were found. The centres with the emission band, peaking at 4.2 K at 1.57 eV, were observed in most of the crystals studied. The centres with the emission band, peaking at 4.2 K at 1.48 eV, were observed only in the PbWO4 : Mo6+, Y3+ crystal. It is suggested that incompletely compensated lead vacancies are responsible for the appearance of the red emission.  相似文献   

13.
Computer simulation techniques were used to investigate intrinsic defects in YAlO3 single crystal. A set of short-range potential parameters were derived using a relaxed fitting procedure incorporating with the known crystal properties. These parameters were then applied within the framework of the shell model. The simulation results reveal that oxygen Frenkel disorder and the antisite defect of Al ion substituting the Y ion dominate the intrinsic defects in YAlO3. An analysis of redox reactions corroborate that the oxidation is most likely to occur via forming interstitial oxygen, while the oxidation via filling oxygen vacancies and reduction reaction may predominate at high temperature. The activation energy of oxygen vacancy migration on conduction was also studied.  相似文献   

14.
15.
Positron-lifetime experiments have been carried out on two undoped n-type liquid encapsulated Czochralski (LEC)-grown InP samples with different stoichiometric compositions in the temperature range 10-300 K. For temperatures below 120 K for P-rich InP and 100 K for In-rich InP, the positron average lifetime began to increase rapidly and then leveled off, which was associated with the charge state change of hydrogen indium vacancy complexes from (VInH4)+ to (VInH4)0. This phenomenon was more obvious in P-rich samples that have a higher concentration of VInH4. The transformation temperature of approximately 120 K suggests that the complex VInH4 is a donor defect and that the ionization energy is about 0.01 eV. The ionization of neutral VInH4 accounted for the decrease of the positron average lifetime when the sample was illuminated with a photon energy of 1.32 eV at 70 K. These results provide evidence for hydrogen complex defects in undoped LEC InP.  相似文献   

16.
160 MeV of neon ion irradiation has been carried out on MgB2 polycrystalline pellets at various doses. There has not been any significant change in Tc except at the highest dose of 1×1015 ions/cm2. Increase in resistivity has been noticed. Resistivity data have been fitted with Bloch-Grüneisen function to extract the values of Debye temperature, residual resistivity and temperature coefficient of resistivity for irradiated as well as unirradiated samples. There has not been any significant effect on electron-phonon coupling due to irradiation as evident from Debye temperature and the electron-phonon coupling constant.  相似文献   

17.
We have studied effects induced by γ-radiation and temperature in Mn-doped YAlO3 crystals. The studies have been performed by means of optical spectroscopy that include measuring of optical absorption changes induced by γ-radiation and elevated temperature as well as thermally stimulated luminescence (TSL). It has been shown that under γ-irradiation of YAlO3:Mn crystals, along with the ionization of MnAl4+ ions (MnAl4+→MnAl5++e), some additional coloration processes take place. This additional coloration is characterized by a wide intense band centered at 26,000- that is ascribed to color centers intrinsic to YAlO3 lattice. This coloration is removed by the way of crystal warming at , while the coloration caused by MnAl5+ ions is removed at higher temperature . The observed TSL glow of irradiated crystals reveals three peaks near 360, 400 and that correspond to three types of traps. Parameters of the traps have been determined. The TSL emission corresponds to intra-center luminescence of MnAl4+ and MnY2+ ions. The possible ionization and trapping mechanisms in YAlO3:Mn crystals are discussed.  相似文献   

18.
The effects of Co dopants and oxygen vacancies on the electronic structure and magnetic properties of the Co-doped SnO2 are studied by the first-principle calculations in full-potential linearized augmented plane wave formalism within generalized gradient approximations. The Co atoms favorably substitute on neighboring sites of the metal sublattice. Without oxygen vacancies, the Co atoms are at low spin state independent of concentration and distribution of Co atoms, and only the magnetic coupling between nearest-neighbor Co atoms is ferromagnetic through direct exchange and super-exchange interaction. Oxygen vacancies tend to locate near the Co atoms. Their presence strongly increases the local magnetic moments of Co atoms, which depend sensitively on the concentration and distribution of Co atoms. Moreover, oxygen vacancies can induce the long-range ferromagnetic coupling between well-separated Co atoms through the spin-split impurity band exchange mechanism. Thus the room temperature ferromagnetism observed experimentally in the Co-doped SnO2 may originate from the combination of short-range direct exchange and super-exchange interaction and the long-range spin-split impurity band exchange model.  相似文献   

19.
Electronic structures of PbMoO4 crystals containing F-type colour centres with the lattice structure optimized are studied within the framework of the fully relativistic self-consistent Dirac-Slater theory, using a numerically discrete variational (DV-Xa) method. The calculated results show that F and F+ centres have donor energy levels in the forbidden band. The optical transition energies are 2.166eV and 2.197eV, respectively, corresponding to the 580nm absorption bands in PbMoO4 crystal. The 580nm absorption band in PbMoO4 is originated from the F-type colour centres.  相似文献   

20.
Electronic structures of the Mn^2+ :CdMoO4 crystal axe studied within the framework of the fully relativistic self-consistent Dirac Slater theory, using a numerically discrete variation (DV-Xα) method. The calculated results indicate that the 3d states of Mn have donor energy level in the forbidden band of CdMoO4 crystal. The O^2- transition energy of O 2p→Mn 3d is 3.12eV under excitation corresponding electronic transition being O^2-+Mn^2+→↑hvex=3.12 eV O^-- +Mn^+→↑hvem O^2-+Mn^2+. It is predicted that the wavelength of emission should be located in the range of the 500-600nm. Thus the 500-600mm emission bands peaking at 550nm (2.25eV) of CdMoO4 crystal under excitation may be related to the Mn-like dopant ion in CdMoO4 crystal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号