首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Heat capacities of the electron acceptor 7,7,8,8-tetracyanoquinodimethane (TCNQ) and its radical-ion salt NH4-TCNQ have been measured at temperatures in the 12-350 K range by adiabatic calorimetry. A λ-type heat capacity anomaly arising from a spin-Peierls (SP) transition was found at 301.3 K in NH4-TCNQ. The enthalpy and entropy of transition are ΔtrsH=(667±7) J mol−1 and ΔtrsS=(2.19±0.02) J K−1 mol−1, respectively. The SP transition is characterized by a cooperative coupling between the spin and the phonon systems. By assuming a uniform one-dimensional antiferromagnetic (AF) Heisenberg chains consisting of quantum spin (S=1/2) in the high-temperature phase and an alternating AF nonuniform chains in the low-temperature phase, we estimated the magnetic contribution to the entropy as ΔtrsSmag=0.61 J K−1 mol−1 and the lattice contribution as ΔtrsSlat=1.58 J K−1 mol−1. Although the total magnetic entropy expected for the present compound is R ln 2 (=5.76 J K−1 mol−1), a majority of the magnetic entropy (∼4.6 J K−1 mol−1) persists in the high-temperature phase as a short-range-order effect. The present thermodynamic investigation quantitatively revealed the roles played by the spin and the phonon at the SP transition. Standard thermodynamic functions of both compounds have also been determined.  相似文献   

2.
We report the results of an investigation of Fe-doped nanocrystalline ZnO particles synthesized using the co-precipitation method with doping concentrations from 5 up to 31 at%. To understand how the dopant influenced the structural, magnetic and optical properties of nanocrystalline ZnO particles, X-ray diffraction, energy dispersive X-ray spectroscopy, infrared absorption spectroscopy, UV-vis spectroscopy, electron spin resonance spectroscopy (ESR) and vibrating sample magnetometer were employed. From the analysis of X-ray diffraction, our Fe-doped nanocrystalline ZnO particles are identified as having the wurtzite crystal structure and the unit cell volume increases with increasing doping concentrations. However, impurity phases are observed for Fe contents higher than 21 at%. Sample structures were further studied by infrared spectra, from which a broad and strong absorption band in the range of 400-700 cm−1 and -OH stretching vibrational mode at approximately 3400 cm−1 were observed. Ultraviolet-visible measurements showed a decrease in the energy gap with increasing Fe content, probably due to an increase in the lattice parameters. Magnetic measurements showed a ferromagnetic behavior for all samples. ESR results indicate the presence of Fe in both valence states Fe2+ and Fe3+.  相似文献   

3.
GaN have sphalerite structure (Cubic-GaN) and wurtzite structure (hexagonal GaN). We report the H-GaN epilayer with a LT-AlN buffer layer has been grown on Si(1 1 1) substrate by metal-organic chemical vapor deposition (MOCVD). According to the FWHM values of 0.166° and 14.01 cm−1 of HDXRD curve and E2 (high) phonon of Raman spectrum respectively, we found that the crystal quality is perfect. And based on the XRD spectrum, the crystal lattice constants of Si (a = 5.3354 ?) and H-GaN (aepi = 3.214 ?, cepi = 5.119 ?) have been calculated for researching the tetragonal distortion of the sample. These results indicate that the GaN epilayer is in tensile strain and Si substrate is in compressive strain which were good agreement with the analysis of Raman peaks shift. Comparing with typical values of screw-type (Dscrew = 7 × 108 cm−2) and edge-type (Dedge = 2.9 × 109 cm−2) dislocation density, which is larger than that in GaN epilayers growth on SiC or sapphire substrates. But our finding is important for the understanding and application of nitride semiconductors.  相似文献   

4.
Infrared optical absorption has been used to study OHimpurities into congruent co-doped LiNbO3:Cr3+:ZnO crystals doped with different Zn2+ concentration. The OH IR absorption spectra present three bands that can be associated with different OH complex centres available in the lattice. For crystals with lower Zn2+ concentrations (<4.7%) only one IR absorption band centred at 2867 nm (3490 cm−1) is reported which is associated with the OH unperturbed vibration. For crystals with higher Zn2+ concentrations (>4.7%), two new bands associated with OHvibration in distortion environment are reported. These bands are centred at 2827 nm (3537 cm−1) and 2847 nm (3512 cm−1) and can be associated with OH-Zn2+ and Cr3+(Li+)-OH-Zn2+(Int.) complex centres, respectively. Electron paramagnetic resonance (EPR) has been used to identify the Cr3+ centres in the lattice of the doped LiNbO3:ZnO crystals.  相似文献   

5.
High-quality LaCuO2, elaborated by solid-state reaction in sealed tube, crystallizes in the delafossite structure. The thermal analysis under reducing atmosphere (H2/N2: 1/9) revealed a stoichiometric composition LaCuO2.00. The oxide is a direct band-gap semiconductor with a forbidden band of 2.77 eV. The magnetic susceptibility follows a Curie-Weiss law from which a Cu2+ concentration of 1% has been determined. The oxygen insertion in the layered crystal lattice induces p-type conductivity. The electrical conduction occurs predominantly by small polaron hopping between mixed valences Cu+/2+ with an activation energy of 0.28 eV and a hole mobility (μ300 K=3.5×10−7 cm2 V−1 s−1), thermally activated. Most holes are trapped in surface-polaron states upon gap excitation. The photoelectrochemical study, reported for the first time, confirms the p-type conduction. The flat band potential (Vfb=0.15 VSCE) and the hole density (NA=5.8×1017 cm−3) were determined, respectively, by extrapolating the curve C−2 versus the potential to their intersection with C−2=0 and from the slope of the linear part in the Mott-Schottky plot. The valence band is made up of Cu-3d orbital, positioned at 4.9 eV below vacuum. An energy band diagram has been established predicting the possibility of the oxide to be used as hydrogen photocathode.  相似文献   

6.
Preparation and characterization of CdS/Si coaxial nanowires   总被引:1,自引:0,他引:1  
CdS/Si coaxial nanowires were fabricated via a simple one-step thermal evaporation of CdS powder in mass scale. Their crystallinities, general morphologies and detailed microstructures were characterized by using X-ray diffraction, scanning electron microscope, transmission electron microscope and Raman spectra. The CdS core crystallizes in a hexagonal wurtzite structure with lattice constants of a=0.4140 nm and c=0.6719 nm, and the Si shell is amorphous. Five Raman peaks from the CdS core were observed. They are 1LO at 305 cm−1, 2LO at 601 cm−1, A1-TO at 212 cm−1, E1-TO at 234 cm−1, and E2 at 252 cm−1. Photoluminescence measurements show that the nanowires have two emission bands around 510 and 590 nm, which originate from the intrinsic transitions of CdS cores and the amorphous Si shells, respectively.  相似文献   

7.
Influence of magnetic annealing at 823 K up to 10 T (T) on the phonon behaviors of nanocrystalline BiFeO3 was investigated by Raman spectroscopy. The frequencies of fundamental Raman modes increase obviously with increasing annealing magnetic field, and the intensity of the 1260 cm−1 two-phonon mode decreases. The pronounced anomalies of Raman phonon modes under magnetic annealing are attributed to the change of the spin-phonon coupling due to the modulation of spiral spin order. Furthermore, the temperature dependence of Raman peak positions, for the two prominent modes (147 and 176 cm−1), show no notable anomaly around TN except the sample annealed under 10 T magnetic field; meanwhile, in this sample, another obvious phonon anomaly occurs at ∼150 K (another magnetic phase transition point), which indicate that stronger magnetic annealing with 10 T intensely enhances the spin-phonon coupling, and possibly increases magnetoelectric coupling of nanocrystalline BiFeO3 due to severely modulation of spiral spin order.  相似文献   

8.
Cu(im)6 complexes in Zn(im)6Cl2·4H2O exhibit a strong Jahn-Teller effect which is static below 100 K and the complex in localized in the two low-energy potential wells. We have reinvestigated electron paramagnetic resonance (EPR) spectra in the temperature range 4.2-300 K and determined the deformation directions produced by the Jahn-Teller effect, energy difference 11 cm−1 between the wells and energy 300 cm−1 of the third potential well. The electron spin relaxation was measured by electron spin echo (ESE) method in the temperature range of 4.2-45 K for single crystal and powder samples. The spin-lattice relaxation is dominated by a local mode of vibration with energy 11 cm−1 at low temperatures. We suppose that this mode is due to reorientations (jumps) of the Cu(im)6 complex between the two lowest energy potential wells. At intermediate temperatures (15-35 K), the T1 relaxation is determined by the two-phonon Raman processes in acoustic phonon spectrum with Debye temperature ΘD=167 K, whereas at higher temperatures the relaxation is governed by the optical phonon of energy 266 cm−1. The ESE dephasing is produced by an instantaneous diffusion below 15 K with the temperature-independent phase memory time , then it grows exponentially with temperature with an activation energy of 97 cm−1. This is the energy of the first excited vibronic level. The thermal population of this level leads to a transition from anisotropic to isotropic EPR spectrum observed around 90 K. FT-ESE gives ESEEM spectrum dominated by quadrupole peaks from non-coordinating 14N atom of the imidazole rings and the peak from double quantum transition νdq. We show that the amplitude of the νdq transition can be used to determine the number of non-coordinating nitrogen atoms.  相似文献   

9.
Thin GaAs films were prepared by pulse plating from an aqueous solution containing 0.20 M GaCl3 and 0.15 M As2O3 at a pH of 2 and at room temperature. The current density was kept as 50 mA cm−2 the duty cycle was varied in the range 10-50%. The films were deposited on titanium, nickel and tin oxide coated glass substrates. Films exhibited polycrystalline nature with peaks corresponding to single phase GaAs. Optical absorption measurements indicated a direct band gap of 1.40 eV. Photoelectrochemical cells were made using the films as photoelectrodes and graphite as counter electrode in 1 M polysulphide electrolyte. At 60 mW cm−2 illumination, an open circuit voltage of 0.5 V and a short circuit current density of 5.0 mA cm−2 were observed for the films deposited at a duty cycle of 50%.  相似文献   

10.
Carbon doping effects in MnAs alloys have been investigated. More carbon doping in MnAs alloys leads to lower Curie temperature, larger thermal hysteresis and sharper slope of the dependence of critical field on reduced temperature due to severe lattice distortion. The obtained maximum of magnetic entropy change for a field change of 5 T is about 12.8 J kg−1 K−1 near room temperature, and increases with more doping carbon content to about 22.4 J kg−1 K−1 in MnAsC0.03 and 13.2 J kg−1K−1 in MnAsC0.05.  相似文献   

11.
The crystal structure, band gap energy and bowing parameter of In-rich InxAl1−xN (0.7 < x < 1.0) films grown by magnetron sputtering were investigated. Band gap energies of InxAl1−xN films were obtained from absorption spectra. Band gap tailing due to compositional fluctuation in the films was observed. The band gap of the as-grown InN measured by optical absorption method is 1.34 eV, which is larger than the reported 0.7 eV for pure InN prepared by molecular beam epitaxy (MBE) method. This could be explained by the Burstein-Moss effect under carrier concentration of 1020 cm−3 of our sputtered films. The bowing parameter of 3.68 eV is obtained for our InxAl1−xN film which is consistent with the previous experimental reports and theoretical calculations.  相似文献   

12.
EPR study of the Cr3+ ion doped l-histidine hydrochloride monohydrate single crystal is done at room temperature. Two magnetically inequivalent interstitial sites are observed. The hyperfine structure for Cr53 isotope is also obtained. The zero field and spin Hamiltonian parameters are evaluated from the resonance lines obtained at different angular rotations and the parameters are: D=(300±2)×10−4 cm−1, E=(96±2)×10−4 cm−1, gx=1.9108±0.0002, gy=1.9791±0.0002, gz=2.0389±0.0002, Ax=(252±2)×10−4 cm−1, Ay=(254±2)×10−4 cm−1, Az=(304±2)×10−4 cm−1 for site I and D=(300±2)×10−4 cm−1, E=(96±2)×10−4 cm−1, gx=1.8543±0.0002, gy=1.9897±0.0002, gz=2.0793±0.0002, Ax=(251±2)×10−4 cm−1, Ay=(257±2)×10−4 cm−1, Az=(309±2)×10−4 cm−1 for site II, respectively. The optical absorption studies of single crystals are also carried out at room temperature in the wavelength range 195-925 nm. Using EPR and optical data, different bonding parameters are calculated and the nature of bonding in the crystal is discussed. The values of Racah parameters (B and C), crystal field parameter (Dq) and nephelauxetic parameters (h and k) are: B=636, C=3123, Dq=2039 cm−1, h=1.46 and k=0.21, respectively.  相似文献   

13.
Polarized infrared reflectivity measurements between 300 and 10 K have been carried out on charge density waves (CDW) conductor blue bronze Tl0.3MoO3. Three important features are observed: (i) A bump at 1155 cm−1 in the reflectivity spectra of Tl0.3MoO3 at 300 K is a precursor of the Peierls gap due to optical excitations across a pseudogap, and this kind of Peierls-like gap opens gradually with decreasing temperature from 180 to 160 K. (ii) The three sharp modes as “triplet” of infrared reflectivity between 800 and 1000 cm−1 of Tl0.3MoO3 along [1 0 2] axis show red shift compared to K0.3MoO3 and Rb0.3MoO3, which is assigned to the increase of the distance of Mo-O bond with the substitution of thallium ions. (iii) Two peaks at about 514 and 644 cm−1 in the far-infrared reflectivity spectra of Tl0.3MoO3 along [1 0 2] direction are suggested to be the electronic transitions from the valence band to the midgap state and from occupied midgap state to the conduction band, respectively.  相似文献   

14.
《Solid State Communications》2003,127(11):703-706
In this work we present temperature dependent infrared reflectivity and absorption of Sr2FeWO6 between 700 and 17 K measured from 40 to 10000 cm−1. The reflectivity spectra show well defined phonon bands peaking at 143, 227, 377 and 625 cm−1 assigned to overlapping vibrational modes split from those active in cubic perovskite. We have also verified that this compound is structurally stable in the whole temperature range and that its optical gap at ∼750 cm−1 (95 meV) undergoes only a minor high temperature decrease ascribed to new thermally accessible levels.  相似文献   

15.
We have attempted to characterize the magnetic and electrical properties of a new mixed-metal molecular material {NBu4[Ni(II)0.5Fe(II)0.5Fe(III)(ox)3]}N synthesized by the use of trioxalatoferrate as the building block. Mössbauer spectroscopy was utilized in order to understand local spin structures in this compound. The results indicate that the compound is a semiconducting ferrimagnet with TN=30 K and room temperature conductivity of 6×10−15 Ω−1 cm−1 along with 1.8 eV activation energy under dark. The compound has no appreciable electrical response towards illumination.  相似文献   

16.
Molecular beam epitaxy (MBE) grown AlN thin layer on sapphire substrates have been implanted with Cr+ ions for various dose from 1013 to 1015 cm−2. The analyses were carried out by an X-ray diffractometer (XRD), Raman spectroscopy, a spectrophotometer and spectroscopic ellipsometry (SE) for structural and optical analyses. E2(high) and A1(LO) Raman modes of AlN layer have been observed and analyzed. The behavior of Raman shift and the variation in intensity and in peak width of Raman modes as a function of ions flux are explained on the basis of chromium substituting aluminum atom and implantation-induced lattice damage. Both Raman and X-ray analyses reveal that the incorporation of chromium atoms increases in the host lattice with the increasing of Cr ions fluence. The band gap energy was determined by using transmission spectra. It was found that the band gap energy decreases as the ion dose increases. The band gap of the unimplanted AlN is 6.02 eV and it decreases down to 5.92 eV for the Cr+-implanted AlN with a ion dose of 1×1015 cm−2. Optical properties such as optical constants of the samples were examined by using a spectroscopic ellipsometer. It was observed that the refractive index (n) decreases with the increasing of ion dose.  相似文献   

17.
The ESR spectrum of Mn2+ doped potassium hydrogen sulphate at liquid nitrogen temperature (77 K) has been analyzed and site of entered Mn2+ in the lattice has been discussed. The values of the zero field parameters that give good fit to the observed ESR spectra have been obtained. The obtained g, A, B, D, E and a values are 2.0002, 66×10−4 cm−1, 26×10−4 cm−1, 59×10−4 cm−1, 32×10−4 cm−1 and −8×10−4 cm−1, respectively. The percentage of covalency of the metal-ligand bond has also been estimated. From the optical absorption study at room temperature, the distortion has been suggested. The observed bands are assigned as transitions from the 6A1g(S) ground state to various excited quartet levels of Mn2+ ion in a cubic crystalline field. The electron repulsion and crystal field parameters B, C, Dq and α providing good fit to the observed optical spectra have been evaluated and the values obtained for the parameters are B=627 cm−1, C=2580 cm−1 , Dq=790 cm−1 and α=76 cm−1.  相似文献   

18.
This paper presents an analytical and numerical investigation of an intense circularly polarized wave propagating along the static magnetic field parallel to oscillating magnetic field in magnetoactive plasma. In the relativistic regime such a magnetic field is created by pulse itself. The authors have studied different regimes of propagation with relativistic electron mass effect for magnetized plasma. An appropriate expression for dielectric tensor in relativistic magnetoactive plasma has been evaluated under paraxial theory. Two modes of propagation as extraordinary and ordinary exist; because of the relativistic effect, ultra-strong magnetic fields are generated which significantly influence the propagation of laser beam in plasma. The nature of propagation is characterized through the critical-divider curves in the normalized beam width with power plane For given values of normalized density (ωp/ω) and magnetic field (ωc/ω) the regions are namely steady divergence (SD), oscillatory divergence (OD) and self-focusing (SF). Numerical computations are performed for typical parameters of relativistic laser-plasma interaction: magnetic field B = 10-100 MG; intensity I = 1016 to 1020 W/cm2; laser frequency ω = 1.1 × 1015 s−1; cyclotron frequency ωc = 1.7 × 1013 s−1; electron density ne = 2.18 × 1020 cm−3. From the calculations, we confirm that a circularly polarized wave can propagate in different regimes for both the modes, and explicitly indicating enhancement in wave propagation, beam focusing/self-guiding and penetration of E-mode in presence of magnetic field.  相似文献   

19.
The electronic structure of the highly ordered alloy Cr3Co with the DO3 structure has been studied by FLAPW calculations. It is found that the ferrimagnetic state is stable and that the equilibrium lattice constant of Cr3Co equals 5.77 Å. A large peak in majority spin density of states (DOS) and an energy gap in minority spin DOS are observed at the Fermi level, which results in a high spin polarization of 90% in the ordered alloy Cr3Co. The total magnetic moment of Cr3Co is 3.12μB, which is close to the ideal value of 3μB derived from the Slater-Pauling curve. An antiparallel alignment between the moments on the Cr (A, C) sites and the Cr (B) sites is observed. Finally, the effect of lattice distortion on the electronic structure and on magnetic properties of Cr3Co compound is studied. A spin polarization higher than 80% can be obtained between 5.55 and 5.90 Å. With increasing lattice constant, the magnetic moments on the (A, C) sites increase and the moments on the (B, D) sites decrease. They compensate each other and make the total magnetic moment change only slightly.  相似文献   

20.
The 2,3-13C2 isotopomer of butadiene was synthesized, and its fundamental vibrational fundamentals were assigned from a study of its infrared and Raman spectra aided with quantum chemical predictions of frequencies, intensities, and Raman depolarization ratios. For two C-type bands in the high-resolution (0.002 cm−1) infrared spectrum, the rotational structure was analyzed. These bands are for ν11 (au) at 907.17 cm−1 and for ν12 (au) at 523.37 cm−1. Ground state and upper state rotational constants were fitted to Watson-type Hamiltonians with a full quartic set of centrifugal distortion constants and two sextic ones. For the ground state, A0 = 1.3545088(7) cm−1, B0 = 0.1469404(1) cm−1, and C0 = 0.1325838(2)  cm−1. The small inertial defects of butadiene and two 13C2 isotopomers, as well as for five deuterium isotopomers as previously reported, confirm the planarity of the s-trans rotamer of butadiene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号