首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of annealing in nitrogen atmosphere on structural and electrical properties of selenium rich CdSe (SR-CdSe) thin films deposited by thermal evaporation onto glass substrates were studied. X-ray diffraction (XRD) patterns showed that the as-prepared films were amorphous, whereas the annealed films were polycrystalline. Analyzing XRD patterns reveals the coexistence of both Se and CdSe crystalline phases which exhibits a hexagonal structure. The microstructure parameters (crystallite size, microstrain and dislocation density) were calculated for annealed films.Temperature dependence (300–500 K) of d.c. conductivity was studied for as-prepared and annealed thin films. The experimental results indicate that the electrical conduction taking place through thermally activated process. At higher temperatures, electrical conduction for as-prepared film is taking place in the extended states while localized states conduction in the band tails is most likely to take place for annealed films. Regarding the lower temperature range, conduction by hopping in the localized states near the Fermi level is found to be dominant. Thus, conductivity data in this range was analyzed using Mott's variable range hopping conduction, where Mott's parameters were calculated for SR-CdSe thin films.  相似文献   

2.
The optical absorption of the as-prepared and thermally annealed Se85−xTe15Sbx (0≤x≤9) thin films was measured. The mechanism of the optical absorption follows the rule of non-direct transition. The optical energy gap (E0) decreased from 1.12 to 0.84 eV with increasing Sb content of the as-prepared films from 0 to 9 at.%. The as-prepared Se76Te15Sb9 films showed an increase in (E0) with increasing the temperature of annealing in the range above Tg (363 K). The electrical conductivity of the as-prepared and annealed films was found to be of Arrhenius type with temperature in the range 300-360 K. The activation energy for conduction was found to decrease with increasing both the Sb content and temperature of annealing. The results were discussed on the basis of the lone-pair electron effect and of amorphous crystalline transformation.  相似文献   

3.
Li–Mn–O thin film cathode materials are prepared by high frequency (27.12 MHz) RF magnetron sputtering. The high RF frequency gives higher deposition rates without compromising on the quality of the films. This investigation focuses on the effects of post-annealing on the micro-structural, morphological and electrical properties of Li–Mn–O films. It is observed that with the increase of annealing temperature the crystallinity as well as the electrical conductivity of the films increases. The films annealed at 600–700 °C are found to have high structural perfection and good electrical properties.  相似文献   

4.
This paper presents the physical properties of vacuum evaporated CdTe thin films with post-deposition thermal annealing. The thin films of thickness 500 nm were grown on glass and indium tin oxide (ITO) coated glass substrates employing thermal vacuum evaporation technique followed by post-deposition thermal annealing at temperature 450 °C. These films were subjected to the X-ray diffraction (XRD),UV-Vis spectrophotometer, source meter and atomic force microscopy (AFM) for structural, optical, electrical and surface morphological analysis respectively. The X-ray diffraction patterns reveal that the films have zinc-blende structure of single cubic phase with preferred orientation (111) and polycrystalline in nature. The crystallographic and optical parameters are calculated and discussed in brief. The optical band gap is found to be 1.62 eV and 1.52 eV for as-grown and annealed films respectively. The I–V characteristics show that the conductivity is decreased for annealed thin films. The AFM studies reveal that the surface roughness is observed to be increased for thermally annealed films.  相似文献   

5.
Thin films of 5,10,15,20-Tetraphenyl-21H,23H-porphine-nickel(II) were prepared by thermal evaporation technique onto clean quartz and glass substrates. Thermogravimetric analysis, X-Ray Diffraction, Scanning Electron Microscope, Transmission Electron Microscope and Fourier transforms infrared spectroscopy were used to investigate the structural properties of the as-prepared and annealed 5,10,15,20-Tetraphenyl-21H,23H-porphine-nickel(II) films. Morphology, crystallite size and dislocation density were enhanced by annealing and included within nanometric scale. The crystallite sizes were 98 nm for powder form and 13, 41.4 and 64.7 nm for the annealed films at 373, 473 and 573 K respectively. Fourier transforms infrared spectroscopy studies released that powder, as-prepared and annealed NiTPP films were stoichiometric. The obtained films were characterized by nanostructure property.  相似文献   

6.
Thick diamond films are known to exhibit remarkably high electrical resistivity and thermal conductivity. However, on thin films, difficulties are often observed to achieve such performances. In this study, the synthesis of ultra‐thin diamond films was optimized towards the possibility to maintain high dielectric performances on layers compatible with today requirements for Silicon‐On‐Diamond technology, and namely aiming at films with thicknesses equal or below 150 nm. The nucleation of diamond nanocrystals is crucial to obtain films with thickness lower than 100 nm. A Bias Enhanced Nucleation step (BEN) was improved to achieve nucleation densities above 1011 cm–2 although the process was also tuned to limit the size of the nanocrystals during this step. The control of the carbonization of the silicon substrate is also essential to reach such a density with a high reproducibility. The BEN is followed by a growth step with optimized conditions. The films were characterized by SEM and Spectroscopic Ellipsometry. Electrical conductivity measurements were conducted on thin diamond films and values obtained on layers below 100 nm were as high as 5 × 1013 Ω cm; a value significantly higher than the state of the art for such thin films. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Thin films of SnSb2S4 have been prepared on glass substrate by using thermal evaporation techniques. The films were annealed in argon gas at low pressure in sealed glass ampoules at 85 °C, 150 °C, 275 °C and 325 °C. XRD of the films reveal that the low temperature annealed films are poly crystalline while the as deposited films and high annealed films are in amorphous states. There is no adequate variation in the photoconductivity response of the amorphous and crystalline phases. The transmittance of the films is low and having no transmittance below 740 nm. The band gap calculated by ellipsometry technique is in the range of 1.82–3.1 eV. The films have n-type conductivity but the film annealed at 325 °C show p-type conductivity.  相似文献   

8.
Bi_2Te_3 thin films and GeTe/B_2Te_3 superlattices of different thicknesses are prepared on the silicon dioxide substrates by magnetron sputtering technique and thermally annealed at 573 K for 30 min. Thermoelectric(TE)measurements indicate that optimal thickness and thickness ratio improve the TE performance of Bi_2Te_3 thin films and GeTe/B_2Te_3 superlattices, respectively. High TE performances with figure-of-merit(ZT) values as high as 1.32 and 1.56 are achieved at 443 K for 30 nm and 50 nm Bi_2Te_3 thin films, respectively. These ZT values are higher than those of p-type Bi_2Te_3 alloys as reported. Relatively high ZT of the GeTe/B_2Te_3 superlattices at 300-380 K were 0.62-0.76. The achieved high ZT value may be attributed to the unique nano-and microstructures of the films,which increase phonon scattering and reduce thermal conductivity. The results indicate that Bi_2Te_3-based thin films can serve as high-performance materials for applications in TE devices.  相似文献   

9.
We report NiO nanowall thin films prepared by a facile hydrothermal synthesis method and their electrochromic application. The as-prepared porous nanowall NiO thin films show a highly porous structure built up by many interconnected nanoflakes with a thickness of about 30 nm. The electrochromic performances of the NiO films are characterized by means of UV–vis spectroscopy and cyclic voltammetry (CV) measurements. The effect of the annealing temperature on electrochromic properties is discussed. The NiO nanowall film annealed at 300 °C exhibits much better electrochromic performance than those counterparts annealed at higher temperature. The film annealed at 300 °C exhibits a noticeable electrochromism with reversible color changes from transparent to brown dark and presents a transmittance variation with 77% at 550 nm. The NiO nanowall film also shows good reaction kinetics with fast switching speed, and the coloration and bleaching times are 3 s and 4 s, respectively. The improved electrochromic performances are due to the porous morphological characteristics with fast ion and electron transfer resulting in fast reaction kinetics and high color contrast.  相似文献   

10.
Thin films of copper oxide were obtained through thermal oxidation (100-450 °C) of evaporated metallic copper (Cu) films on glass substrates. The X-ray diffraction (XRD) studies confirmed the cubic Cu phase of the as-deposited films. The films annealed at 100 °C showed mixed Cu-Cu2O phase, whereas those annealed between 200 and 300 °C showed a single cubic Cu2O phase. A single monoclinic CuO phase was obtained from the films annealed between 350 and 450 °C. The positive sign of the Hall coefficient confirmed the p-type conductivity in the films with Cu2O phase. However, a relatively poor crystallinity of these films limited the p-type characteristics. The films with Cu and CuO phases show n-type conductivity. The surface of the as-deposited is smooth (RMS roughness of 1.47 nm) and comprised of uniformly distributed grains (AFM and SEM analysis). The post-annealing is found to be effective on the distribution of grains and their sizes. The poor transmittance of the as-deposited films (<1%) is increased to a maximum of ∼80% (800 nm) on annealing at 200 °C. The direct allowed band gap is varied between 2.03 and 3.02 eV.  相似文献   

11.
The copper oxide films have been deposited by thermal evaporation and annealed under ambient air and dry air respectively, at different temperatures. The structural characteristics of the films were investigated by X-ray diffraction. They showed the presences of two hydroxy-carbonate minerals of copper for annealing temperatures below 250 °C. Above this temperature the conductivity measurements during the annealing process, show a transition phase from metallic copper to copper oxides. The copper oxides sensitivity toward ethanol were performed using conductivity measurements at the working temperature of 200 °C. A decrease of conductivity was observed under ethanol vapor, showing the p-type semi-conducting characters of obtained copper oxide films. It was found that the sensing properties of copper oxide toward ethanol depend mainly on the annealing conditions. The best responses were obtained with copper layers annealed under dry air.  相似文献   

12.
The lattice parameters of as-prepared and annealed Co nanowires with hcp and fcc structures have been measured using the in situ high-temperature x-ray diffraction method. The hcp and fcc Co nanowires have been fabricated within the porous anodic alumina membranes by a direct-current electrodeposition technique. The results indicate that the variational quantity of the interplanar spacing for hcp Co nanowire arrays is bigger than that for fcc Co nanowire arrays in spite of as-prepared and annealed samples. The structural difference between hcp and fcc Co nanowires results in the different thermal expansion behaviors.  相似文献   

13.
The structural and luminescence related optical behaviours of Au ion implanted ZnO films grown by magnetic sputtering and their post implantation annealing behaviours in the temperature range of 100-700 °C have been investigated. Optical absorption and transmittance spectra of the films indicate that band edge of Au-implanted ZnO has shifted to high energy range and optical band gap has increased, because the sharp difference of thermal expansion induces the lattice mismatch between ZnO and SiO2. PL spectra reveal that UV and visible luminescence bands of ZnO films can be improved after thermal annealing due to recovery of defects and Au ions incorporation. Importantly, green luminescence band of 530 nm has been only observed in the Au-implanted and subsequently annealed ZnO films and it enhances with the increasing annealing temperature, which can be related to Au atoms or clusters in ZnO films. Furthermore, X-ray photoelectron spectroscopy measurements reveal that the Au0 is dominant state in Au implanted and annealed ZnO films. Possible mechanisms, such as optical transitions of Au atoms or clusters and deep level luminescence of ZnO, have been proposed for green emission.  相似文献   

14.
Polyaniline (PANi) films with high conductivity and nanostructure were prepared by a modified dipping method using four acids on a polytetrafluoroethylene (PTFE) substrate. The “doping-dedoping-redoping” process was carried out to investigate whether the electrical and surface properties of PANi coating could be changed. We found that the conductivity decreased with prolonged immersing time in both water and DMEM, until the PANi films were almost non-conductive. The as-prepared PANi films were hydrophilic, and the immersing treatment with DMEM made them hydrophobic. Moreover, they recovered their hydrophilicity following the redoping treatment. The morphologies of the PANi films became heterogeneous after the immersing-redoping treatment. These results provide a good reference for the use of conducting polymers as a neural probe coating.  相似文献   

15.
Indium tin oxide (ITO) coatings are widely used as transparent electrodes for optoelectronic devices. The most common preparation methods are sputtering, evaporation, and wet chemical deposition. ITO coatings can also be manufactured by solution deposition of ITO nanoparticles followed by furnace thermal annealing with the major motivation to reduce equipment investment. However, conventional furnace annealing is energy intensive, slow, and limited by the peak processing temperature. To overcome these constraints, we suggest using a laser beam for ITO nanoparticle annealing over a large area. It is shown in the present study that a low cost, high power, and high efficiency laser can yield large area functional ITO films in a process that carries substantial promise for potential industrial implementation. Furthermore, laser annealing generates higher electrical conductivity than conventional, thermally annealed nanoparticle films. The optical and electrical properties of the annealed ITO films can also be altered by adjusting laser parameters and environmental gases.  相似文献   

16.
邹平  吕丹  徐桂英 《物理学报》2020,(5):182-189
采用高压烧结技术制备了稀土元素Tb掺杂的n型Bi2Te2.7Se0.3基纳米晶块体热电材料.将高压烧结成型的样品于633 K真空退火36 h.研究了Tb掺杂量对样品的晶体结构和热电性能的影响.结果表明,高压烧结制备的样品为纳米结构, Tb掺杂使样品的晶胞体积变大,功率因子增大,热导率降低,从而使ZT值提高.Tb掺杂量为x=0.004是最优的掺杂量,该掺杂量的高压烧结样品经退火处理后,于373 K时ZT值达到最大为0.99,并且在323-473 K范围内, ZT值均大于0.8,这对用于温差发电领域具有重要意义.  相似文献   

17.
Zinc oxide (ZnO) thin films were deposited on microscope glass substrates by sol-gel spin coating method. Zinc acetate (ZnAc) dehydrate was used as the starting salt material source. A homogeneous and stable solution was prepared by dissolving ZnAc in the solution of monoethanolamine (MEA). ZnO thin films were obtained after preheating the spin coated thin films at 250 °C for 5 min after each coating. The films, after the deposition of the eighth layer, were annealed in air at temperatures of 300 °C, 400 °C and 500 °C for 1 h. The effect of thermal annealing in air on the physical properties of the sol-gel derived ZnO thin films are studied. The powder and its thin film were characterized by X-ray diffractometer (XRD) method. XRD analysis revealed that the annealed ZnO thin films consist of single phase ZnO with wurtzite structure (JCPDS 36-1451) and show the c-axis grain orientation. Increasing annealing temperature increased the c-axis orientation and the crystallite size of the film. The annealed films are highly transparent with average transmission exceeding 80% in the visible range (400-700 nm). The measured optical band gap values of the ZnO thin films were between 3.26 eV and 3.28 eV, which were in the range of band gap values of intrinsic ZnO (3.2-3.3 eV). SEM analysis of annealed thin films has shown a completely different surface morphology behavior.  相似文献   

18.
Thin films of Ge–As–Se chalcogenide glasses have been deposited by thermal evaporation from bulk material and submitted to thermal treatments. The linear refractive index and optical band-gap for as-deposited and annealed films have been analyzed as function of the deposition parameters, chemical composition and mean coordination number (MCN). The chemical composition of the films was found to be directly affected by deposition rate, with low rates producing films with elevated Ge and reduced As content, whilst at high rates the Ge content was generally reduced and As levels increased compared with the bulk starting material. As a result films with close to the same stoichiometry as the bulk glass could be obtained by choosing appropriate deposition conditions. As-deposited films with MCN in between 2.44 and 2.55 showed refractive indices and optical band-gaps very close to those of the bulk glass whereas outside this range the film indices were higher and the optical gaps lower than those of the bulk glass. Upon annealing at close to their glass transition temperature, high MCN films evolved such that their indices and band-gaps approached the bulk glass values whereas at low MCN films resulted in no changes to the film properties.  相似文献   

19.
The optical absorption of the As-prepared and annealed As45.2Te46.6In8.2 thin films are studied. Films annealed at temperatures higher than 453 K show a decrease in the optical energy gap (Eo). The value of Eo increases from 1.9 to 2.43 eV with increasing thickness of the As-prepared films from 60 to 140 nm. The effect of thickness on high frequency dielectric constant (?) and carrier concentration (N) is also studied. The crystalline structures of the As45.2Te46.6In8.2 thin films resulting from heat treatment of the As-prepared film at different elevated temperatures is studied by X-ray diffraction. An amorphous-crystalline transformation is observed after annealing at temperatures higher than 453 K. The electrical conductivity at low temperatures is found due to the electrons transport by hopping among the localized states near the Fermi level. With annealing the films at temperatures higher than 473 K (the crystallization onset temperature) for 1 h, the electrical conductivity increases and the activation energy decreases, which can be attributed to the amorphous-crystalline transformations.  相似文献   

20.
The effects of annealing on the chemical states of N dopant, electrical, and optical properties of N-doped ZnO film grown by molecular beam epitaxy (MBE) are investigated. Both the as-grown ZnO:N film and the film annealed in N2 are of n-type conductivity, whereas the conductivity converts into p-type conductivity for the film annealed in O2. We suggest that the transformation of conductivity is ascribed to the change in ratio of the N molecular number on O site (N2)O to the N atom number on O site (NO) in ZnO:N films under the various annealed atmosphere. For the ZnO:N film annealed in N2, the percentage content of (N2)O is larger than that of NO, i.e.the ratio >1, resulting in the n-type conductivity. However, in the case of the ZnO:N film annealed in O2, the percentage content of (N2)O is fewer than that of NO, i.e., the ratio <1, giving rise to the p-type conductivity. There is an obvious difference between low-temperature (80K) PL spectra of ZnO:N film annealed in N2 and that of ZnO:N film annealed in O2. An emission band located at 3.358eV is observed in the spectra of the ZnO:N film after annealed in N2, this emission band is due to donor-bound exciton (D0X). After annealed in O2, the PL of the donor-bound exciton disappeared, an emission band located at 3.348eV is observed, this emission band is assigned to acceptor-bound exciton (A0X).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号