首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The magnetic property of double doped manganite Nd0.5(1+x)Ca0.5(1−x)Mn(1−x)CrxO3 with a fixed ratio of Mn3+:Mn4+=1:1 has been investigated. For the undoped sample, it undergoes one transition from charge disordering to charge ordering (CO) associated with paramagnetic (PM)-antiferromagnetic (AFM) phase transition at T<250 K. The long range AFM ordering seems to form at 35 K, rather than previously reported 150 K. At low temperature, an asymmetrical M-H hysteresis loop occurs due to weak AFM coupling. For the doped samples, the substitution of Cr3+ for Mn3+ ions causes the increase of magnetization and the rise of Tc. As the Cr3+ concentration increases, the CO domain gradually becomes smaller and the CO melting process emerges. At low temperature, the FM superexchange interaction between Mn3+ and Cr3+ ions causes a magnetic upturn, namely, the second FM phase transition.  相似文献   

2.
We report an infrared reflection spectroscopy study of La1/2Ca1/2MnO3 over a broad frequency range and temperature interval which covers the transitions from the high temperature paramagnetic to ferromagnetic and, upon further cooling, to antiferromagnetic phase. The structural phase transition, accompanied by a ferromagnetic ordering at TC=234 K, leads to enrichment of the phonon spectrum. A charge ordered antiferromagnetic insulating ground state develops below the Néel transition temperature TN=163 K. This is evidenced by the formation of charge density waves and opening of a gap with the magnitude of 2Δ0=(320±15) cm−1 in the excitation spectrum. Several of the infrared active phonons are found to exhibit anomalous frequency softening. The experimental data suggest coexistence of ferromagnetic and antiferromangetic phases at low temperatures.  相似文献   

3.
CaMn0.96Mo0.04O3 is an example of Mn4+ rich perovskite manganites, which exhibits a net ferromagnetic component at low temperature, observed by dc magnetization and ac susceptibility. To characterize the magnetic state of this compound, neutron powder diffraction was carried out in the 2-400 K temperature range, showing that it is necessary to use three components (ferromagnetic and G- and A-type antiferromagnetic) to describe it. This particular state is in agreement with the unusual magnetic behaviour observed by macroscopic measurements and is compared to the one observed for manganites with similar Mn valence but obtained by A-site substitution.  相似文献   

4.
We report a magnetoelectric effect in the double perovskite CaMn7O12, that shows a complex magnetic behavior below 90 K with two magnetic phases coexisting (one ferrimagnetic and the other modulated). A second magnetic transition, associated with changes in the magnetic modulation and magnetic ordering coherence lengths of the two magnetic phases occurs at 50 K (TN2). A detailed structural characterization of this compound, that we have carried out by means of high-resolution X-ray powder diffraction, reveals an anisotropic thermal expansion of its lattice parameters at 50 K (TN2). In addition, our study of the complex permittivity of this sample as a function of temperature, frequency and magnetic field shows very interesting results below 90 K and specially below 50 K: the dielectric constant εr that was decreasing continuously on cooling experiences an upturn, and even more, on application of a magnetic field it shows a moderate magnetoelectric response. We attribute such dielectric behavior to the formation of electric dipoles by magnetostriction in this charge and spin ordered system, that are sensible to the presence of an external magnetic field.  相似文献   

5.
The ZnGa2O4:Mn2+, Cr3+ phosphors show three colors; the blue band of 380 nm from the charge transfer between Ga-O, the green band of 505 nm from Mn2+ and the red band of 705 nm from Cr3+. As a variation of Mn2+ or Cr3+ concentrations in ZnGa2O4:Mn2+, Cr3+, the relative emission intensity can be tuned. This phenomenon is explained in terms of the energy transfer based on four factors: the spectral overlap between the energy donors (Ga-O) and the energy accepters of Mn2+ or Cr3+, the absorption cross section of the energy accepters, the distance between them, and the decay time of the energy donors. ZnGa2O4:0.0025Mn2+, 0.010Cr3+ shows the CIE coordinates of x=0.4014, y=0.3368, which is a pure white light. The single-phased full-color emitting ZnGa2O4:Mn2+, Cr3+ phosphors can be applied to illumination devices.  相似文献   

6.
Visible photoluminescence and its temperature dependence of La2/3Ca1/3MnO3 in the temperature range 138-293 K were measured. It was observed that the main broad band centered at ∼1.77 eV with the shoulders at ∼1.57 and ∼1.90 eV existed in the entire temperature range. It can be well fitted by three Gaussian curves B1, B2 and B3 centered at ∼1.52, ∼1.75 and ∼1.92 eV, respectively. The intensities of the peak B1 and B2 vary as temperature increases. In the entire temperature range, the intensity of B1 increases with increasing temperature, whereas that of B2 decreases. The photoluminescence mechanisms for La2/3Ca1/3MnO3 are presented based on the electronic structures formed by the interactions among spin, charge and lattice, in which B1 was identified with the charge transfer excitation of an electron from the lower Jahn-Teller split eg level of a Mn3+ ion to the eg level of an adjacent Mn4+ ion, B2 is assigned to the transition between the spin up and spin down eg bands separated by Hund's coupling energy EJ and B3 is attributed to the transition, determined by the crystal field energy EC, between a t2g core electron of Mn3+ to the spin up eg bands of Mn4+ by a dipole allowed charge transfer process.  相似文献   

7.
Mössbauer studies of 57Fe-doped CaMn7O12 have been carried out over two paramagnetic ranges of temperature. The observed hyperfine parameters of 57Fe spectra were discussed assuming that Fe3+ cations are mainly substituted for manganese cations in six-coordinated oxygen polyhedra. In the first temperature range , the values of quadrupole splitting (Δ1?Δ2) are evidence for two types of structural distortion of (MnO6) polyhedra due to the ordering of Mn3+ and Mn4+ cations in (9d) and (3b) sites of a trigonal structure with a charge ordering. In the second temperature range , the observed temperature evolution of the line shape in 57Fe spectra confirms two phenomena: (i) the structural phase transition of the trigonal phase to a high-temperature cubic structure, with the coexistence of both phases between 380 and 450 K; (ii) the existence of only non-distorted (MnO6) octahedra due to the fast electronic exchange between Mn3+ and Mn4+ cations.  相似文献   

8.
Mn4+-rich perovskite manganites (nominal composition: Pr0.1Ca0.9MnO3) were synthesized by using a citric acid method and sintered at different temperatures (800, 900, 1000, and 1300 °C) to adjust the concentration of charge carrier. All the samples are found to be in the cluster glass state at low temperature, as indicated by dc and ac magnetization. With the increase of sintering temperature, the ferromagnetic component in samples increases at first, and attains a maximum at 1000 °C, then decreases again at 1300 °C, which could be well interpreted by the change of charge carrier concentration induced by nonstoichiometry, consistent with the trend on the phase diagram. However, nonstoichiometry breaks long-range Mn-O-Mn interaction, resulting in the variance from the phase diagram.  相似文献   

9.
Complex magnetic, magnetoelectric and magnetoelastic studies of spontaneous and field-induced phase transitions in TmMn2O5 were carried out. In the vicinity of spontaneous phase transition temperatures (35 and 25 K) the magnetoelectric and magnetoelastic dependences demonstrated the jumps of polarization and magnetostriction induced by the field ∼150 kOe. These anomalies can be attributed to the influence of magnetic field on the conditions of incommensurate-commensurate phase transition at 35 K and the reverse one at 25 K. In b-axis dependences the magnetic field-induced spin-reorientation phase transition was also observed below 20 K. Finally the magnetoelectric anomaly associated with metamagnetic transition is observed below the temperature of rare-earth subsystem ordering at relatively small critical fields of 5 kOe. This variety of spontaneous and induced phase transitions in RMn2O5 stems from the interplay of three magnetic subsystems: Mn3+, Mn4+, R3+. The comparison with YMn2O5 highlights the role of rare earth in low-temperature region (metamagnetic and spin-reorientation phase transitions), while the phase transition at higher temperatures between incommensurate and commensurate phases should be ascribed to the different temperature dependences of Mn3+ and Mn4+ ions. The strong correlation of magnetoelastic and magnetoelectric properties observed in the whole class of RMn2O5 highlights their multiferroic nature.  相似文献   

10.
Er-Tm-codoped Al2O3 thin films with different Tm to Er concentration ratios were synthesized by cosputtering from separated Er, Tm, Si, and Al2O3 targets. The temperature dependence of photoluminescence (PL) spectra was studied. A flat and broad emission band was achieved in the 1.4-1.7 μm and the observed 1470, 1533 and 1800 nm emission bands were attributed to the transitions of Tm3+: 3H4 → 3F4, Er3+: 4I13/2 → 4I15/2 and Tm3+: 3F4 → 3H6, respectively. The temperature dependence is rather complicated. With increasing measuring temperature, the peak intensity related to Er3+ ions increases by a factor of five, while the Tm3+ PL intensity at 1800 nm decreases by one order of magnitude. This phenomenon is attributed to a complicated energy transfer (ET) processes involving both Er3+ and Tm3+ and increase of phonon-assisted ET rate with temperature as well. It should be helpful to fully understand ET processes between Er and Tm and achieve flat and broad emission band at different operating temperatures.  相似文献   

11.
Alternately Er doped Si-rich Al2O3 (Er:SRA) multilayer film, consisting of alternate Er-Si-codoped Al2O3 (Er:Si:Al2O3) and Si-doped Al2O3 (Si:Al2O3) sublayers, has been synthesized by co-sputtering from separated Er, Si, and Al2O3 targets. The dependence of Er3+ related photoluminescence (PL) properties on annealing temperatures over 700-1100 °C was studied. The maximum intensity of Er3+ PL, about 10 times higher than that of the monolayer film, was obtained from the multilayer film annealed at 950 °C. The enhancement of Er3+ PL intensity is attributed to the energy transfer from the silicon nanocrystals in the Si:Al2O3 sublayers to the neighboring Er3+ ions in the Er:Si:Al2O3 sublayers. The PL intensity exhibits a nonmonotonic temperature dependence: with increasing temperature, the integrated intensity almost remains constant from 14 to 50 K, then reaches maximum at 225 K, and slightly increases again at higher temperatures. Meanwhile, the PL integrated intensity at room temperature is about 30% higher than that at 14 K.  相似文献   

12.
The structural and magnetic properties of Pr0.75Na0.25MnO3 have been investigated experimentally. At room temperature, the compound shows paramagnetic characteristic. Along with decreasing temperature, a peak appears in the magnetization versus temperature curve around 220 K. To clarify whether this peak is associated with the ordering arrangement of Mn3+ and Mn4+ ions, electron diffraction experiments were carried out below and above 220 K respectively. Only basic Brag diffraction spots can be observed at high temperatures, however, superlattice diffraction appears below 220 K. This provides direct evidence for the existence of charge ordering in Pr0.75Na0.25MnO3. We find the Mn3+ and Mn4+ cations form zigzag chains in a-c plane by analyzing the diffraction patterns. Combining with the magnetization measurements and the results of electron spin resonance, we confirm the antiferromagnetic phase and ferromagnetic component coexist in Pr0.75Na0.25MnO3 below 120 K.  相似文献   

13.
The thermal annealing behavior of the Y3Al5O12, CaF2 and LiF single crystals bombarded at Algiers with reactor neutrons has been monitored by optical absorption spectroscopy. The irradiation was performed at about 315 K. On heating samples after irradiation, the optical absorption bands decrease and disappear completely at 873 and 523 K in the case of Y3Al5O12 and CaF2, respectively. Activation energies of 1.2±0.02 and 0.9±0.2 eV are estimated for Y3Al5O12 and CaF2, respectively. On the other hand, the LiF crystal shows a complex annealing behavior. Here, the optical absorption spectrum presents different shapes after each annealing temperature. Four steps are distinguished and discussed on heating samples from 300 to 673 K. Above 673 K, the absorption drops by about 50%; it completely disappears at 773 K.  相似文献   

14.
Anion-deficient substituted ferrites Ca2Fe2 − x N x O5 (N = Sc3+, Al3+) and mixed manganite CaMn7O12 have been investigated by 119Sn and 57Fe probe M?ssbauer spectroscopy. The mechanism of charge compensation for heterovalent impurity Sn4+ ions in the structure of the ferrite Ca2Fe2O5 has been established. The presence of nonequivalent crystallographic positions of manganese cations, caused by their charge ordering in the structure of the manganite CaMn7O12, is shown. Magnetic ordering of Mn3+ and Mn4+ cations in the octahedral sublattice of CaMn7O12 at T < T M2 ≈ 90 K is established. Original Russian Text ? A.V. Sobolev, I.A. Presnyakov, K.V. Pokholok, V.S. Rusakov, T.V. Gubaidulina, A.V. Baranov, G. Demazeau, 2007, published in Izvestiya Rossiiskoi Akademii Nauk Seriya Fizicheskaya, 2007, Vol. 71, No. 9, pp. 1347–1354.  相似文献   

15.
The synthesis of LaNi1−xMnxO3+δ samples with different oxygen contents has been performed. Structural characterization was carried out by X-ray and neutron powder diffraction. The crystallographic structure of stoichiometric samples, δ=0, evolves from an orthorhombic (LaMnO3) to a rhombohedral (LaNiO3) unit cell. Oxygen excess, δ>0, seems to stabilize the rhombohedral unit cell. For instance, the unit cells at room temperature are orthorhombic and rhombohedral for LaNi0.1Mn0.9O3.0 and LaNi0.1Mn0.9O3.13, respectively. The X-ray patterns show the coexistence of both phases for LaNi0.5Mn0.5O3+δ at room temperature. This coexistence is not ascribed to chemical inhomogeneities, but to a structural phase transition. Neutron patterns collected from 1.5 to 300 K show a continuous evolution except for LaNi0.5Mn0.5O3.08 and LaNi0.1Mn0.9O3.13, which show a phase transition at around 290 and 220 K, respectively. The neutron patterns suggest the presence of an ordered arrangement of Ni and Mn atoms in the crystallographic unit cell. Such arrangement indicates that LaNi0.5Mn0.5O3 could be considered as a double perovskite (nominal formula, La2NiMnO6).  相似文献   

16.
Luminescent properties of Pr3+ or Mn2+ singly doped and Pr3+, Mn2+ co-doped LaMgB5O10 are investigated by synchrotron radiation VUV light. When LaMgB5O10:Pr3+ is excited at185 nm, the photon cascade emission between 4f levels of Pr3+ is observed. In the excitation spectra of LaMgB5O10:Mn2+ monitoring the 615 nm emission of Mn2+, several excitation bands in a spectral range from 330 to 580 nm are recorded, among which the most intense band is centered at 412 nm (6A1g4Eg-4A1g). This band has considerable spectra overlap with the 410 nm emission (1S01I6) of Pr3+, which is favorable for energy transfer from Pr3+ to Mn2+. Such energy transfer is observed in the co-doped sample, converting the violet emission (410 nm) of Pr3+ into the red emission (615 nm) of Mn2+. The concentration dependence of transfer efficiency is also investigated.  相似文献   

17.
Lead-free (K0.5Na0.5)0.90Li0.06Sr0.02Nb(1−x)SbxO3 (KNLSN-Sbx) ceramics were synthesized by ordinary sintering technique. The compositional dependence of phase structure and electrical properties of the ceramics was systematically investigated. All samples possessed pure perovskite structure, showing room temperature symmetries of orthorhombic at x<0.01, coexistence of orthorhombic and tetragonal phases at x=0.01, and tetragonal at 0.02≤x≤0.05. The temperature of the polymorphic phase transition (PPT) was shifted to lower temperature and dielectric relaxor behavior was induced by increasing Sb content. The samples near the coexistence region (x=0.01) exhibited enhanced electrical properties: d33∼145 pC/N, kp∼38% and Pr∼20.4 μC/cm2.  相似文献   

18.
The photoluminescence and low-voltage cathodoluminescence characteristics of BaTi4O9:Pr3+ were investigated. The excitation band of intervalence charge transfer (IVCT) of BaTi4O9:Pr3+ emerged distinctly at 330 nm. The resultant emissions appeared at 606-643 nm corresponding to the 1D23H4 transition. In BaTi4O9:Pr3+, the emission of 3P03H4 transition at 490 nm was not observed. The results were in a pure red color emission.  相似文献   

19.
The thermomagnetic behaviour (within the temperature range 553-300 K) for the bulk composite Nd60Fe30Al10 alloy is described in terms of a transition from paramagnetic to superferromagnetic state at T=553 K, followed by a ferromagnetic ordering for T<473 K. For the superferromagnetic regime, the alloy thermomagnetic response was associated to a homogeneous distribution of magnetic clusters with mean magnetic moment and size of 1072 μB and 2.5 nm, respectively. For T<473 K, a pinning model of domain walls described properly the alloy coercivity dependence with temperature, from which the domain wall width and the magnetic anisotropy constant were estimated as being of ≈8 nm and ≈105 J/m3, typical values of hard magnetic phases. Results are supported by microstructural and magnetic domain observations.  相似文献   

20.
NaLaP2O7 and NaGdP2O7 powder samples are prepared by solid-state reactions at 750 and 600 °C, respectively, and the VUV-excited luminescence properties of Ln3+ (Ln=Ce, Pr, Tb, Tm, Eu) in both diphosphates are studied. Ln3+ ions in both hosts show analogous luminescence. For Ce3+-doped samples, the five Ce3+ 5d levels can be clearly identified. As for Pr3+ and Tb3+-doped samples, strong 4f-5d absorption band around 172 nm is observed, which matches well with Xe-He excimer in plasma display panel (PDP) devices. As a result, Pr3+ can be utilized as sensitizer to absorb 172 nm VUV photon and transfer energy to appropriate activators, and Tb3+-doped NaREP2O7(RE=La, Gd) are potential 172 nm excited green PDP phosphors. For Tm3+ and Eu3+-doped samples, the Tm3+-O2− charge transfer band (CTB) is observed to be at 177 nm, but the CTB of Eu3+ is observed at abnormally low energy position, which might originate from multi-position of Eu3+ ions. The similarity in luminescence properties of Ln3+ in both hosts indicates certain structural resemblance of coordination environment of Ln3+ in the two sodium rare earth diphosphates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号