首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The temperature dependence of the resistivity for composite samples of (1−x)La0.67Ba0.33MnO3+xYSZ(LBMO/YSZ) with different YSZ doping level of x has been investigated in a magnetic field range of 0-7000 Oe, where the YSZ represents yttria-stabilized zirconia (8 mol% Y2O3+92 mol% ZrO2). With increasing YSZ doping level, the range of 0-10%, the metal-insulator transition temperature (TP) decreases. However, the resistivity, specially the low temperature resistivity, increases. Results also show that the YSZ doping level has an important effect on a low field magnetoresistance (LFMR). In the magnetic field of 7000 Oe, a room temperature magnetoresistance value of 20% was observed for the composite with a YSZ doping level of 2%, which is encouraging for potential application of CMR materials at room temperature and low field.  相似文献   

2.
The influence of Fe3O4 contents on the electrical transport properties (resistivity and ac susceptibility) of a series of composite samples of La0.67Ca0.33MnO3/Fe3O4 is studied. Results show that the Fe3O4 phase not only shifts the intrinsic insulator-metal (I-M) transition temperature TP1 to a lower temperature, but also causes a new I-M transition at a lower temperature TP2 (TP2<TP1). On the basis of an analysis by scanning electron microscopy and X-ray diffraction, we suggest that the decrease of the I-M transition temperature and the formation of the new I-M transition are caused by the segregation of a new phases related to the Fe3O4 at grain boundaries or surfaces of the La0.67Ca0.33MnO3 grains.  相似文献   

3.
An enhanced magnetoresistance and a two-fold effect result from impurity dopant were observed in composites of La0.67Ca0.33MnO3/YSZ and La0.67Ca0.33MnO3/Fe3O4. Where YSZ represents yttria-stabilized zirconia and the doping level of both YSZ and Fe3O4 is 1 mol%. Different electrical and magnetic transport properties, in particular a lower field magnetization behavior, were observed between pure La0.67Ca0.33MnO3 and the impurity doped La0.67Ca0.33MnO3 composites. Compared with pure La0.67Ca0.33MnO3, a possible interpretation is presented by considering the influences of YSZ and Fe3O4 on the structure of grain boundaries and/or surfaces of La0.67Ca0.33MnO3grains.  相似文献   

4.
Polycrystalline samples of La0.67Ca0.33MnO3 were prepared by solid-state reactions by varying the pelletization force and the sintering temperature. Lowering the sintering temperature gave rise to smaller grains and increased the overall resistivity of the ceramic. Partial melting was observed in the ceramics sintered at higher temperatures (1400-1500 °C). Additionally, these ceramics showed two distinct resistivity peaks. The resistivity peak near the magnetic transition (TC) was sharp, whereas the second peak was a broad one observed below TC.  相似文献   

5.
Upon annealing polycrystalline La0.67Ba0.33MnO3 bulk samples in flowing 95%Ar:5%H2 mixed gas at 700 °C for different time, the insulator–metal transition temperature, TPTP and the amplitude of AC magnetic susceptibility were decreased first, then increased, finally decreased again. While the resistivity was increased monotonically. This anomalous behavior was explained by the combinational effects of oxygen loss and Ba ion vacancies caused by the segregation of Ba ion related impurity phase.  相似文献   

6.
Effect of Fe3O4 segregation at grain boundaries on the electrical transport and magnetic properties of La0.67Ca0.33MnO3 is investigated. The experimental results show that the Fe3O4 segregation not only shifts the paramagnetic-ferromagnetic transition temperature of La0.6TCa0.33MnO3 to a lower temperature region but also induces a new transition in a lower temperature region. Meanwhile, the transition processes observed in both the resistivity and magnetization curves are obviously widened. Compared to pure La0.67Ca0.33MnO3, we assume that the Fe3O4 segregation level at the grain boundaries can modify the electrical transport and magnetic properties of La0.67Ca0.33MnO3.  相似文献   

7.
The LaxCa1−xMnO3+δ compositions close to charge ordering (x∼0.5) show a gradual relaxation from a metallic/ferromagnetic state to an insulating/antiferromagnetic state with thermal cycling. Here, we report on the magnetic relaxation in the metastable state and also the revival of the metastable state (in a relaxed sample) due to high temperature thermal treatment. We also show the changes in the magnetization and the thermoelectric power as the revived metastable state is cycled. We find that the changes in the thermoelectric power extend well into the region above the charge ordering temperatures. This suggests that the micro-structural changes accompanying the thermal cycling leave their imprint in the paramagnetic insulating state as well.  相似文献   

8.
The electrical and magnetoresistant properties of La0.67(Ca0.65Ba0.35)0.33MnO3/Agx (abbreviated by LCBMO/Agx) have been studied. The results show that Ag addition causes a decrease of resistivity dramatically and especially induces a large enhancement of room temperature magnetoresistance (MR). The room temperature MR ratio for x=0.27 sample in 10 kOe magnetic field is 41%, almost 20 times larger than that for x=0 sample. This enhancement is related to that the Curie temperature (Tc) of the sample is near room temperature, as well as the significant reduction of resistivity. The good fits of experimental results for x=0.27 sample to Brillouin function indicate that the MR behavior in the Ag added LCBMO is induced by the spin-dependent hopping of the electrons between the spin clusters, which is an intrinsic property of the CMR materials.  相似文献   

9.
The influence of dc current on the resistivity ρ and the Young's modulus E of La0.5Ca0.5MnO3 compound has been investigated by means of an in situ measuring method. At low temperatures, both the resistivity ρ and the relative modulus ΔE increase with the current. A relaxation behavior of ρ to the higher resistive state is observed at a fixed temperature and a constant current. After storing the sample for a few days, ρ decreases with the current, accompanying a slight drop of ΔE at low temperatures. Current-induced effects on ρ and ΔE are interpreted according to the current-induced interwinning of Mn3+O6 octahedral distortion modes between Q2- and Q3-types, which is suggested to contribute to the variation of the resistivity.  相似文献   

10.
The electronic transport behavior of La0.67Sr0.33MnO3 epitaxial thin films with different thicknesses has been investigated under various applied DC currents. The 20 and 70 nm thick films show a giant negative electroresistance (ER). In contrast, the films with 100 nm thickness show unusual giant positive ER, which can reach 30% with the current density of 1.8×108 A/cm2 at room temperature. It is interesting that the electric current can also change the magnetoresistance of the films. The results were explained by considering the spin polarized current induced increase of ferromagnetic metallic phase and current-induced lattice distortion via electron wind force under high current density.  相似文献   

11.
The influence of SiO2 on the electrical transport properties of LCMO/SiO2 composites with different SiO2 contents x is investigated, where LCMO represents La2/3Ca1/3MnO3. Results show that the SiO2 phase not only shifts the metal–insulator transition temperature (Tp) to a high temperature range, but also has an effect on the magnetoresistance (MR) of the composites. The temperature dependence of resistivity indicates that the Tp of the composites is obviously higher than that of pure LCMO, and that the peak resistivity ρmax of the composites is lower than that of pure LCMO. In the SiO2 content x∼0.02, the TP is the highest and ρmax becomes the lowest. The experimental observation is discussed on the basis of the analysis of scanning electron microscopy (SEM) images and X-ray diffraction (XRD) patterns. Compared with pure LCMO, a possible interpretation is presented by considering the influence of SiO2 on the coupling between ferromagnetic (FM) domains of LCMO.  相似文献   

12.
The La0.67Sr0.33MnO3 composition prepared by sol-gel synthesis was studied by dc magnetization measurements. A large magnetocaloric effect was inferred over a wide range of temperature around the second-order paramagnetic-ferromagnetic transition. The change of magnetic entropy increases monotonically with increasing magnetic field and reaches the value of 5.15 J/kg K at 370 K for Δμ0H=5 T. The corresponding adiabatic temperature change is 3.3 K. The changes in magnetic entropy and the adiabatic temperature are also significant at moderate magnetic fields. The magnetic field induced change of the specific heat varies with temperature and has maximum variation near the paramagnetic-ferromagnetic transition. The obtained results show that La0.67Sr0.33MnO3 could be considered as a potential candidate for magnetic refrigeration applications above room temperature.  相似文献   

13.
The effect of Al substitution for Mn site in layered manganese oxides La1.3Sr1.7Mn2−xAlxO7 on the magnetic and electrical properties has been investigated. It is interesting that all the samples undergo a similar and complex transition with lowing temperature; they transform from the two-dimensional short-range ferromagnetic order at T*, then enter the three-dimensional long-range ferromagnetic state at TC, at last they display the canted antiferromagnetic state below TN. T*, TC and TN are all reduced with Al content. Resistivity increases sharply with increasing Al concentration, and the metal-insulator transition disappears when x reaches 10%. Additionally, magnetoresistance (MR) effect is weakened. Al substitution dilutes the magnetic active Mn-O-Mn network and weakens the double exchange interaction, and further suppresses FM ordering and metallic conduction. Owing to the anisotropic interaction in the layered perovskite, the magnetic and electrical properties are more sensitive to Al doping level than those in ABO3-type perovskite.  相似文献   

14.
The electroresistance (ER) of La0.67Ca0.33MnO3 (LCMO) epitaxial thin films with different thicknesses was studied. For the 110 nm thick LCMO film, its ER shows a maximum at Tp, where the resistance shows a peak, and decreases to zero at lower temperatures. While for the 30 nm thick LCMO film, its ER is remarkable in a wide temperature range. Another interesting observation in this work is that the electric current can tune the magnetoresistance of the ultrathin LCMO thin film. The results were discussed by considering the coexistence of ferromagnetic metallic phase with the charge ordered phase, and the variation of the phase separation with film thickness and electric current. This work also demonstrates that electric current can tune the magnetoresistance of the manganites, which is helpful for their applications.  相似文献   

15.
The study of the structural and magnetic phase diagram of the manganites La1−xAgxMnO3 shows similarity with the La1−xSrxMnO3 series, involving a metallic ferromagnetic domain at relatively high temperature (≈300 K). The Ag-system differs from the Sr-one by a much smaller homogeneity range (x≤1/6) and the absence of charge ordering. But the most important feature of the Ag-manganites deals with the exceptionally high magnetoresistance (−25%) at room temperature under 1.2 T, that appears for the composition x=1/6. The latter is interpreted as the coincidence of the optimal double exchange condition (Mn3+:Mn4+=2) with Tmax=300 K (maximum of the ρ(T) curve in zero field).  相似文献   

16.
The effect of Te-doping at La-site on structural, magnetic and transport properties in the manganites La0.7Sr0.3−xTexMnO3 (0≤x≤0.15) has been investigated. All samples show a rhombohedral structure with the space group . It shows that the Mn-O-Mn bond angle decreases and the Mn-O bond length increases with the increase of Te content. The Curie temperature TC decreases with increasing Te-doping level, in contrast, the magnetization magnitude of Te-doping samples at low temperatures increase with increasing x as x≤0.05 and then decrease with further increasing x to 0.15. The results are discussed in terms of the combined effects of the opening of the new double exchange (DE) channel between Mn2+-O-Mn3+ due to the introduction of Mn2+ ions because of the substitution of Te4+ for Sr2+ and the reduction of the transfer integral b due to the decrease of the Mn-O-Mn bond angle.  相似文献   

17.
The (1−x)La0.67Ca0.33MnO3+xCuO composites have been synthesized by a new liquid phase method. The XRD and SEM measurements reveal that little CuO is soluble in the structure of La0.67Ca0.33MnO3 and is mainly distributed at the grain boundary of La0.67Ca0.33MnO3. As CuO content x increases, the magnetization M values increase until x=0.05 and M values decrease when x further increases at low temperature. For x=0.10, 0.20 and 0.30 composites, double metal-insulator transitions accompanying a single ferromagnetic transition are observed. Large low-field magnetoresistance is achieved for the composites and the largest magnetoresistance appeared when x=0.20.  相似文献   

18.
Effects of doping Na on the structure, electrical and magnetic properties of La2/3Ca1/3MnO3 are investigated. A structural phase transition from orthorhombic to rhombohedral structure takes place at y=0.375. All samples show metal-insulator (M-I) transition at the transition temperature and undergo the transition from paramagnetism to ferromagnetism at the Curie temperature TC. and TC increase monotonically with increasing Na content. However the Na-doped samples have a shoulder in their electrical transport curves found below and shows a widened magnetic transition process. On the other hand, intrinsic colossal magnetoresistance (CMR) peaks are observed in all the samples, but samples with y around 0.25 show two MR peaks which can be attributed to magnetic inhomogeneity induced by the doped Na+ ions. Here we propose a method to broaden the CMR peak of perovskite manganite, which is beneficial for practical applications.  相似文献   

19.
The evolution of magnetic and electrical phases in La0.8−δCa0.2MnO3 was investigated in terms of La deficiency. We found that the increase of the La deficiency tends to raise the Curie temperature (TC) in La0.8−δCa0.2MnO3. The FM clusters formed in compounds with large La deficiency provide percolation paths above TC. With increasing the La defect, the transport property changes from insulating to metallic state, which is in association with the crossover from a second order to a first order magnetic phase transition in the vicinity of TC.  相似文献   

20.
The perovskite bilayers La0.67Ca0.33MnO3 (LCMO) (100 nm) / La0.67Sr0.33MnO3(LSMO) (100 nm) and LSMO (100 nm) / LCMO (100 nm) are fabricated by a facing-target sputtering technique. Their transport and magnetic properties are investigated. It is found that the transport properties between them are different obviously due to distinguishable structures, and the different lattice strains in both films result in the difference of metal-to-insulator transition. Only single-step magnetization loop appears in our bilayers from 5K to 320K, and the coercive force of LSMO/LCMO varies irregularly with a minimum ~ 2387A/m which is lower than that of LCMO and LSMO single layer films. The behaviour is explained by some magnetic coupling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号